Mykhailo Moklyachuk – to the 75th anniversary of his birth
DOI:
https://doi.org/10.17721/1812-5409.2023/2.1Keywords:
stationary stochastic process, optimal estimation, spectral theory of random processesAbstract
On September 28, 2023, Mykhailo Moklyachuk, Doctor of Physical and Mathematical Sciences, Professor, Laureate of the State Prize of Ukraine in Education, Honored Worker of Science and Technology of Ukraine, and Academician of the Academy of Sciences of the Higher School of Ukraine, celebrated his 75th birthday.
His scientific research is devoted to the study of stationary random processes, functionalities of stationary processes, and random fields.
Pages of the article in the issue: 13 - 15
Language of the article: English
References
Moklyachuk M. (2008). Robust estimates for functionals of stochastic processes. VPC ``Kyiv University'' [in Ukrainian]. (Моклячук М.П. (2008). Робастні оцінки функціоналів від стохастичних процесів. ВПЦ «Київський університет».)
Moklyachuk M. & Masyutka O. Minimax estimates for functionals of stochastic processes. VPC ``Kyiv University'' [in Ukrainian]. (Масютка О.Ю., Моклячук М.П. (2012). Мінімаксні оцiнки функцiоналiв вiд стаціонарних процесiв. ВПЦ «Київський університет».)
Moklyachuk M., Masyutka O. (2012). Minimax-robust estimation technique for stationary stochastic processes. LAP Lambert Academic Publishing.
Moklyachuk M. & Shchestyuk N. (2013). Estimates of functionals of random fields. Uzhgorod: Autdor-Shark [in Ukrainian]. (Оцінки функціоналів від випадкових полів.) (Моклячук М.П., Щестюк Н.Ю. (2013). Оцiнки функцiоналiв вiд випадкових полiв. Уж.: ПП «АУТДОР-ШАРК».)
Golichenko I. & Moklyachuk M. (2014). Estimates of functionals of periodically correlated stochastic processes. Kyiv, NVP ``Interservice'' [in Ukrainian]. (Голіченко І.І., Моклячук М.П. (2014). Оцінки функціоналів від періодично корельовапих стохастичних процесів. Київ, НВП «Інтерсервіс».)
Luz M. & Moklyachuk M. (2016). Estimates of functionals from processes with stationary increments and cointegrated sequences. Kyiv, NVP ``Interservice'' [in Ukrainian]. (Луз М.М., Моклячук М.П. (2016). Оцінки функціоналів від процесів зі стаціонарними приростами та коінтегрованих послідовностей. НВП «Інтерсервіс».)
Moklyachuk M., Golichenko I. (2016). Periodically Correlated Processes Estimates. LAP LAMBERT Academic Publishing.
Moklyachuk M., Masyutka O., & Golichenko I. (2018). Estimates of Periodically Correlated Isotropic Random Fields} Nova Science Publishers.
Moklyachuk M. & Sidei M.(2016). Estimates of functionals from stationary processes with missing observations. Kyiv, NVP ``Interservice'' [in Ukrainian]. (Моклячук М.П., Сідей М.І. (2018). Оцінки функціоналів від стаціонарних процесів за спостереженнями з пропусками. НВП «Інтерсервіс», Київ.)
Luz M., Moklyachuk M. (2019). Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences. Wiley – ISTE.
Moklyachuk M., Sidei M. & Masyutka O. (2019). Estimation of Stochastic Processes with Missing Observations. Nova Science Publishers.
Moklyachuk M., Editor (2023). Stochastic Processes: Fundamentals and Emerging Applications. NY: Nova Science Publishers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Oleksandr Borysenko, Volodymyr Zubchenko, Yuliya Mishura, Mykola Perestyuk, Rostyslav Yamnenko, Tetyana Yanevych
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).