Point control of linear hyperbolic integro-differential systems
DOI:
https://doi.org/10.17721/1812-5409.2024/2.4Keywords:
integro-differential equations, linear hyperbolic equation, Volterra operator, viscoelastic media, optimal control, point controlAbstract
Background. The work focuses on the optimal control of distributed systems described by linear hyperbolic integro-differential equations with partial derivatives and Volterra-type integral components. Such integro-differential equations are a standard subject in applied mathematics and frequently arise in studies of processes in viscoelastic media (such as amorphous polymers, semi-crystalline polymers, biopolymers, metals at very high temperatures, bituminous materials, and more). The primary goal is to prove the existence of optimal control for distributed systems modeled by these equations.
Methods. We apply methods of functional analysis and the theory of distributions. The study is conducted in specially defined Hilbert spaces, where the control operator in the system's right-hand side includes generalized Dirac delta functions. We establish the main result on the existence of optimal control based on the theory of a priori estimates in negative norms, building on the foundational work of Yu. M. Berezansky and further developed by V. P. Didenko, S. I. Lyashko, and their colleagues.
Results. We formulate an optimal control problem, where control of the system is governed by a control operator appearing in the right-hand side of the initial-boundary value problem. The control operator acts into spaces of generalized functions, modeling pointwise control of the system. Further, we propose appropriate Hilbert spaces for the problem's operator and the space of admissible controls. Moreover, we provide a priori estimates in negative norms, define generalized solutions, and prove the well-posedness of the initial-boundary value problem. Finally, a general theorem on the existence of optimal control is establish and the well-definedness and weak continuity of the control operator are proved. Based on these statements, we formulate a theorem on the existence of optimal control for the problem, imposing restrictions on the admissible control set and the quality criterion to be minimized.
Сonclusions. We prove a theorem providing sufficient conditions for the existence of optimal control for the considered system. In particular, we demonstrate that the control operator corresponding to pointwise control is well-defined and weakly continuous from the control space to the space of right-hand sides.
Pages of the article in the issue: 20 - 28
Language of the article: Ukrainian English
References
Anikushyn, A. (2013). Generalized solvability of hyperbolic integro-differential equations. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, 4, 91–95 [in Ukrainian]. [Анікушин, А. (2013). Узагальнена розв’язність гіперболічних інтегро-диференціальних рівнянь. Вісник Київського національного університету імені Тараса Шевченка. Фізико-математичні науки, 4, 91–95]
Anikushyn, A. (2010). Generalized solvability of integro-differential equations of elliptic type. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, 3, 163–168 [in Ukrainian]. [Анікушин, А. (2010). Узагальнена розв’язність інтегро-диференціальних рівнянь еліптичного типу. Вісник Київського національного університету імені Тараса Шевченка. Фізико-математичні науки, 3, 163–168]
Anikushyn, A. (2010). Optimal control of integro-differential systems of the parabolic type. Journal of Computational and Applied Mathematics, 3, 3–16 [in Ukrainian]. [Анікушин, А. (2010). Оптимальне керування інтегро-диференціальними системами параболічного типу. Журнал обчислювальної та приклданої математики, 3, 3–16]
Anikushyn, A. (2014). Generalized optimal control for systems described by linear integro-differential equations with nonnegative definite integral operators. Journal of Automation and Information Science, 46(6), 58–67. https://doi.org/10.1615/JAutomatInfScien.v46.i6.60
Anikushyn, A., & Andaral, A. (2024). Generalized optimal control of pseudoparabolic integro-differential systems. Nonlinear oscilations, 27(1), 3–18. https://doi.org/10.3842/nosc.v27i1.1444%20 [in Ukrainian]. [Анікушин, А. & Андарал А. (2024). Узагальнене оптимальне керування псевдопараболiчними iнтегро-диференцiальними системами. Нелінійні коливання, 27(1), 3–18. https://doi.org/10.3842/nosc.v27i1.1444]
Anikushyn, A., & Hranishak, Kh. (2018). Generalized solvability of one integro-differential equation of hyperbolic type. In Modern Problems of Mathematical Modeling, Computational Methods and Information Technologies: Materials of International scientific conference (pp. 15–16). Rivne State University of Humanities. https://itconfdoc.nuwm.edu.ua/index.php/ITConf/article/view/150/74
Anikushyn, A., & Hulianytskyi, A. (2014). Generalized solvability of parabolic integro-differential equations. Differential Equations, 50(1), 98–109. https://doi.org/10.1134/S0012266114010133
Anikushyn, A., Lyashko, V., & Samosonok, O. (2024). Optimal control of the systems governed by linear hyperbolic integro-differential equations. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, 1, ???–???. https://doi.org/10.17721/1812-5409.2024/1.22
Anikushyn, A., & Nomirovskyi, D. (2011). Generalized solutions for linear operators with weakened a priori inequalities. Ukrainian Mathematical Journal, 62(8), 1175–1186. https://doi.org/10.1007/s11253-011-0435-x
Berezanskyi, Ju. (1968). Expansions in eigenfunctions of selfadjoint operators. American Mathematical Society.
Cannarsa, P., & Sforza, D. (2011). Integro-differential equations of hyperbolic type with positive definite kernels. Journal of Differential Equations, 250, 4289–4335. https://doi.org/10.1016/j.jde.2011.03.005
Conti, M., Gatti, S., & Pata, V. (2008). Uniform decay properties of linear volterra Integro-differential equations. Mathematical Models and Methods in Applied Sciences, 18(1), 21–45. https://doi.org/10.1142/S0218202508002590
Dafermos, C. (1970). An Abstract Volterra Equation with Applications to Linear Viscoelasticity. Journal of Differential Equations, 7, 554–569. https://doi.org/10.1016/0022-0396(70)90101-4
Diagana, T. (2014). Existence results for some damped second-order Volterra integro-differential equations. Applied Mathematics and Computation, 237, 304–317. https://doi.org/10.1016/j.amc.2014.03.105
Didenko, V. P. (1972). On boundary value problems for multidimensional hyperbolic equations with degeneracy. Proceedings of the USSR Academy of Sciences, 205(4), 763–766 [in Russian]. [Диденко, В.П. (1972) О краевых задачах для многомерных гиперболических уравнений с вырождением. Доклады Академии наук СССР, 205(4), 763–766 ]
Engler, H. (1991). Weak Solutions of a Class of Quasilinear Hyperbolic Integro-Differential Equations Describing Viscoelastic Materials. Archive for Rational Mechanics and Analysis, 113, 1–38. https://doi.org/10.1007/BF00380814
Fabrizio, M., & Morro, A. (1992). Mathematical Problems in Linear Viscoelasticity. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970807
Gan, X.-T., & Yin, J.-F. (2015). Symmetric finite volume element approximations of second order linear hyperbolic integro-differential equations. Computers and Mathematics with Applications, 70, 2589–2600. https://doi.org/10.1016/j.camwa.2015.09.019
Hulianytskyi, A. (2020). Weak solvability of the variable-order subdiffusion equation. Fractional Calculus and Applied Analysis, 23, 920–934. https://doi.org/10.1515/fca-2020-0047
Hulianytskyi, A., & Semenov V. (2012). Integro-differential pseudoparabolic systems: a priori estimates and impulse-point controllability. Proceedings of the NAS of Ukraine, 4, 43–49. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/49486/08-Hulianytskyi.pdf?sequence=1 [in Ukrainian]. [Гуляницький, А.Л. & Семенов В.В. (2012) Інтегро-диференціальні системи псевдопараболічного типу: апріорні оцінки та імпульсно-точкова керованість. Доповіді НАН України, 4, 43–49. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/49486/08-Hulianytskyi.pdf?sequence=1 ]
Karaa, S., Pani, A., & Yadav, S. (2015). A priori hp-estimates for discontinuous Galerkin approximations to linear hyperbolic integro-differential equations. Applied Numerical Mathematics, 96, 1–23. https://doi.org/10.1016/j.apnum.2015.04.006
Kelly, P. (2013). Solid Mechanics Lecture Notes. The University of Auckland.
Klyushin, D., Lyashko, S., Nomirovskii, D., Petunin, Yu., & Semenov, V. (2011). Generalized Solutions of Operator Equations and Extreme Elements. Springer Science+Business Media. https://doi.org/10.1007/978-1-4614-0619-8
Lakes, R. (1998). Viscoelastic Solids. CRC Press Revivals. https://doi.org/10.1201/9781315121369.
Loreti, P., & Sforza, D. (2010). Reachability problems for a class of integro-differential equations. Journal of Differential Equations, 248, 1711–1755. https://doi.org/10.1016/j.jde.2009.09.016
Lyashko, S. (2002). Generalized Optimal Control of Linear Systems with Distributed Parameters. Kluwer Academic Publishers. https://doi.org/10.1007/b130433
Lyashko, S., & Nomirovskii, D. (2003). Generalized Solutions and Optimal Controls in Systems Describing the Dynamics of a Viscous Stratified Fluid. Differential Equations, 39(1), 90–98. https://doi.org/10.1023/A:1025176109884
Lyashko, S., & Nomirovskii, D. (2003). The generalized solvability and optimization of parabolic systems in domains with thin low-permeable inclusions. Cybernetics and Systems Analysis, 39, 737–745. https://doi.org/10.1023/B:CASA.0000012094.62199.de
Lyashko, S., Nomirovskii, D., & Sergienko, T. (2001). Trajectory and final controllability in hyperbolic and pseudohyperbolic systems with generalized actions. Cybernetics and Systems Analysis, 37, 756–763. https://doi.org/10.1023/A:1013871026026
Lyashko, S., & Semenov, V. (2001). Controllability of linear distributed systems in classes of generalized actions. Cybernetics and Systems Analysis, 37, 13–32. https://doi.org/10.1023/A:1016607831284
Nomirovskii, D. (1999). The control of pseudohyperbolic systems. Journal of mathematical sciences, 97(2), 3945–3951. https://doi.org/10.1007/BF02366385
Nomirovskii, D. (2004). Generalized solvability of parabolic systems with nonhomogeneous transmission conditions of nonideal contact type. Differential Equations, 40(10), 1467–1477. https://doi.org/10.1007/s10625-004-0013-1
Nomirovskii, D. (2006). Unique solvability of pseudohyperbolic equations with singular right-hand sides. Mathematical Notes, 80, 550–562. https://doi.org/10.1007/s11006-006-0174-8
Nomirovskii, D. (2007). Generalized solvability and optimization of a parabolic system with a discontinuous solution. Journal of Differential Equations, 233(1), 1–21. https://doi.org/10.1016/j.jde.2006.09.025
Nomirovskii, D., & Vostrikov, O. (2016). Generalized statements and properties of models of transport processes in domains with cuts. Cybernetics and Systems Analysis, 52, 931–942. https://doi.org/10.1007/s10559-016-9895-1
Renardy, M., Hrusa, W., & Nohel, J. (1987). Mathematical Problems in Viscoelasticity. Longman Science & Technology.
Saedpanah, F. (2014). Well-posedness of an integro-differential equation with positive type kernels modeling fractional order viscoelasticity. European Journal of Mechanics A/Solids, 44, 201–211. https://doi.org/10.1016/j.euromechsol.2013.10.014
Semenov, V., & Denisov, S. (2023). Impulse Trajectory and Final Controllability of Parabolic-Hyperbolic Systems. Cybernetics and Systems Analysis, 59(3), 417–427. https://doi.org/10.1007/s10559-023-00576-0
Sergienko, I., Khimich, O., Klyushin, D., Lyashko, V., Lyashko, S., & Semenov, V. (2023). Formation and Development of the Scientific School of the Mathematical Theory of Filtration. Cybernetics and Systems Analysis, 59, 61–70. https://doi.org/10.1007/s10559-023-00542-w
Shen, W., Yang, D., & Liu, W., (2014). Optimal control problem governed by a linear hyperbolic integro-differential equation and its finite element analysis. Boundary Value Problems, 173. https://doi.org/10.1186/s13661-014-0173-8
Tymchyshyn, I., & Nomirovskii, D., (2021). Generalized Solvability of a Parabolic Model Describing Transfer Processes in Domains with Thin Inclusions. Differential Equations, 57, 1053–1062. https://doi.org/10.1134/S0012266121080097
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Andrii Anikushyn, Khrystyna Hranishak

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).