Stability of non-thin anisotropic cylindrical shells in spatial position under distributed lateral pressure

Authors

  • V. M. Trach National University of Water and Environmental Engineering, Rivne
  • A. V. Podvornyi National University of Water and Environmental Engineering, Rivne https://orcid.org/0000-0001-8518-4395
  • N. B. Zhukova Institute of Mechanics of NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.17721/1812-5409.2023/2.26

Keywords:

stability, three-dimensional approach, anisotropic layered cylindrical shells

Abstract

A three-dimensional approach to solving the problem of stability of non-thin cylindrical anisotropic layered shells under distributed lateral pressure is proposed. Based on the modified Hu-Washizu variational principle, a three-dimensional system of homogeneous differential stability equations is obtained for the calculation of shells, the anisotropy of which is characterized by a material with one plane of elastic symmetry. The solution of the three-dimensional system was carried out using the Bubnov-Galerkin methods and numerical discrete orthogonalization.

The influence of an increase in the number of cross-laid layers of the same thickness on the stability of an anisotropic cylindrical shell is studied. The results of the solution are presented by graphs and their analysis is given.

Pages of the article in the issue: 152 - 155

Language of the article: Ukrainian

References

BAZENOV, V., SEMENUK, M. and TRACH, V. (2010) Neliniyne deformuvannya, stiykist' i zakritichna povedinka anizotropnykh obolonok. Kyiv: Karavela.

TRACH, V., PODVORNYI, A. and KHORUZHYI, M. (2019) Deformuvannya ta stiykistʹ netonkykh anizotropnykh obolonok. Kyiv: Karavela.

GUZ, A. (1986) Osnovy trekhmernoy teorii ustoychivosti deformiruemykh tel. Kiyev: Vischa shkola.

GUZ, A. and BABICH, I. (1985) Prostranstvennye zadachi teorii uprugosty i plastichnosty. T.4. Trehmernaya teoriya ustoychivosty deformiruemyh tel. Kiyev: Naukova dumka.

VASIDZU, K. (1987) Variatsionnyye metody v teorii uprugosti i plastichnosti. M.: Mir.

SEMENYUK, M., TRACH, V. & PODVORNYI, A. (2023) Napruzheno-deformovanyy stan tovstostinnoyi anizotropnoyi tsylindrychnoyi obolonky. Prykladna mekhanika. 59 (1). p. 91-102.

TRACH, V. & PODVORNYI, A. (2022) Prostorovi rivnyannya stiykosti anizotropnykh tovstykh tsylindrychnykh obolonok pid diyeyu osʹovoho tysku. Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy. 41. p. 197-212.

GRIGORENKO, YA., VLAYKOV, G. and GRIGORENKO, A. (2006) Chislenno-analiticheskoe reshenie zadach mekhaniki obolochek na osnove razlichnih modeley. Kyiv: Akademperiodika.

Downloads

Published

2023-12-23

How to Cite

Trach, V. M., Podvornyi, A. V., & Zhukova, N. B. (2023). Stability of non-thin anisotropic cylindrical shells in spatial position under distributed lateral pressure. Bulletin of Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences, (2), 152–155. https://doi.org/10.17721/1812-5409.2023/2.26

Issue

Section

Differential equations, mathematical physics and mechanics