Recognition of heart rhythm disorders in children by integral parameters of electrocardiograms

Authors

DOI:

https://doi.org/10.17721/1812-5409.2023/2.36

Keywords:

electrocardiogram, regression, degree of heart rhythm disturbance

Abstract

The article deals with the organization of a database table for the accumulation of integral parameters of electrocardiograms of male and female children in the front-line region of residence (the city of Kharkiv and the Kharkiv region of Ukraine). The calculated main numerical characteristics of integral ECG parameters such as mathematical expectation, variance and standard deviation with heart rhythm disorders are presented. The application of logistic regression to determine the degree of heart rhythm disturbance, which is determined in the interval (0;1), is considered. Representation of logistic regression as multiple linear regression is described. The LSE method is used to estimate the parameters. A correlation matrix of linearly independent integral ECG parameters is given. The obtained results may be of interest to developers of software applications designed for personal health monitoring.

Pages of the article in the issue: 200 - 205

Language of the article: Ukrainian

References

GONCHAR, M. O. et al. (2019) Osoblivosti EKG-pokaznikiv u ditey v normi ta pri patologiyi: metod. vkaz. Kharkiv: KhNMU.

FROLOVA T. V. et al. (2020) Anatomo-fiziologichni osoblivosti, metodika doslidzhennya i semiotika zahvoryuvan’ sertsevo-sudinnoyi sistemi u ditey: metod. vkaz. Kharkiv: KhNMU.

DRAGO F., BATTIPAGLIA I., and DI MAMBRO C. (2018) Neonatal and Pediatric Arrhythmias: Clinical and Electrocardiographic Aspects. Card Electrophysiol Clin. [Online] 10(2). p. 397-412. Available from: doi:10.1016/j.ccep. 2018.02.008 [Accessed: 30 Jun. 2023].

LAMBRECHTS L. & FOURIE B. (2020) How to interpret an electrocardiogram in children. BJA Education. [Online] 20 (8). P. 266-277. Available from: doi: 10.1016/j.bjae.2020.03.009 [Accessed: 30th Jun 2023].

BEZRUK V.V. and NECHITAILO YU.M. (2023) ECG in children in normal and pathological conditions: clinical cases. 2 ed. Chernivtsi: BDMU.

FATULA M.I. et al. (2020) Osnovi praktichnoyi elektrokardIografiyi : 5 Ed., Uzhgorod: Goverla.

Neduraeva A.Yu. & Rudnitska O.V. (2022) Avtomatizatsiya viyavlennya porushen ritmu sertsya. Biomedical Engineering and Technology. [Online] 2(8). p. 1—6. Available from: http://biomedtech.kpi.ua/article/download/267898/266273/624359 [Accessed: 30th Jun 2023].

SHIMAUCHI S., EGUCHI K., AOKI R., FUKUI M., and HARADA N. (2021) R-R Interval Estimation for Wearable Electrocardiogram Based on Single Complex Wavelet Filtering and Morphology-Based Peak Selection. IEEE Access. [Online] V.9. p. 60802–60827. Available from: https://doi.org/10.110 9%2Faccess.2021.3070604 [Accessed: 30th Jun 2023].

KARADENIZ C. (2020) Importance of electrocardiographic markers in predicting cardiac event in children. Biomark Med. [Online] 14(17). P. 1679–1689. Available from: doi:10.2217/bmm-2020-0391 [Accessed: 30th Jun 2023].

ROCHELSON E., TAYLOR S. HOWARD, and JEFFREY J. KIM (2023) Demystifying the Pediatric Electrocardiogram: Tools for the Practicing Pediatrician. Pediatr. Rev. [Online] 44 (1). p. 3–13. Available from: https://doi.org/10.1542/pir.2021-005346 [Accessed: 30th Jun 2023].

Downloads

Published

2023-12-23

How to Cite

Ivanov, S. M., & Matviienko, S. O. (2023). Recognition of heart rhythm disorders in children by integral parameters of electrocardiograms. Bulletin of Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences, (2), 200–205. https://doi.org/10.17721/1812-5409.2023/2.36

Issue

Section

Computer Science and Informatics