Modeling of health and mortality functions based on data for the population of Ukraine




The State Health function, stochastic modeling, Gompertz model, the first exit time, the Force of Mortality


In the work the approach to modeling of data sets of the life table is given. Life expectancy limits based on stochastic mortality modeling and the application of the critically low first achievement theory are also investigated. Particular attention is paid to the representation of the function of health, together with a well-established theory of the Force of Mortality, as well as life tables. The parameters of the model are estimated and analyzed according to the data of demographic tables for the population of Ukraine.

Pages of the article in the issue: 78 - 83

Language of the article: Ukrainian


J. JANSSEN & C. H. SKIADAS (1995) Dynamic modelling of life-table data. Applied Stochastic Models and Data Analysis. 11(1). p. 35-49.

E. SCHRÖ DINGER (1915) Zur theorie d fall- und steigversuche an teilchenn mit Brownsche bewegung. Phys. Zeit., 16. p. 289-295.

M. SMOLUCHOWSKY (1915) Notiz über die Berechnung der Brownschen Molekularbewegung bei der Ehrenhaft-Millikanschen Versuchsanordnung. Phys. Zeit. 16. p. 318.

A.J.F. SIEGERT (1951) On the first passage time probability problem. Physical Review. 81. p. 617-623.

C. JENNEN (1985) Second-order approximation for Brownian first exit distributions. Ann. Probab. 13. p. 126-144.

H. R. LERCHE (1986) Boundary crossing of Brownian motion. Springer-Verlag.

C. JENNEN & C. LERCHE & H. R. LERCHE (1988) First exit densities of Brownian motion through one-sided moving boundaries. Z. Wahrsch. Uerw. 55. P. 133-148.

C. H. SKIADAS & C. SKIADAS (2007) A modeling approach to life table data, in Recent Advances in Stochastic Modeling and Data Analysis. World Scientific. p. 350-359.




How to Cite

Pashchuk, I. O., & Livinska, H. V. (2022). Modeling of health and mortality functions based on data for the population of Ukraine. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, (2), 78–83.



Computer Science and Informatics