Mathematical modeling of the stressed state of a viscoelastic half-plane with inclusions




viscoelasticity, flat viscoelastic body, complex potentials, method of boundary integral equations, viscoelastic characteristics of regions, resolvent operators


The application of the method of boundary integral equations is considered for studying the stress state of flat viscoelastic bodies with inclusions. The method is based on the use of complex potentials and the apparatus of generalized functions. An analytical solution of the problem is obtained for a half-plane with inclusions of arbitrary shape. For a numerical study of the change in the stress state depending on the time and geometry of the inclusions, a discrete analogue of the system of boundary-time integral equations has been developed.

Pages of the article in the issue: 42 - 45

Language of the article: English


Brebbia K., Telles, Zh. and Vroubel, L., 1987. Metody granichnyh jelementov. M.: Mir.

Kaminskii, A.A., Zatula, N.I. and Dyakon, V.N., 2002. Investigation of the stress-strain state of viscoelastic piecewise-homogeneous bodies by the method of boundary integral equations. Mechanics of composite materials, 38(3), pp.209-214. DOI: 10.1023/A:1016079000224

Lomakyn, V.A., 1976. Teorija uprugosti neodnorodnyh tel: Uchebnoe posobie. MGU.

Mushelishvili, N.I., 1949. Nekotorye osnovnye zadachi matematicheskoj teorii uprugosti: Osnovnye uravnenija: Ploskaja teorija uprugosti: Kruchenie i izgib. M.: AN SSSR.

Rabotnov, Ju.N., 1966. Polzuchest' jelementov konstrukcij. M.: Nauka. Gl. red. fiz.-mat. lit.

Savin, G.M. and Rushhyc'kyj, Ja.Ja., 1976. Elementy mehaniky spadkovyh seredovyshh. K.: Vyshha shkola.

Wineman, A., 2009. Nonlinear viscoelastic solids - a review. Mathematics and mechanics of solids, 14(3), pp.300-366. DOI: 10.1177/1081286509103660

Zatula, N.I. and Lavrenyuk, V.I., 1995. Stressed-strained state of a viscous half-plane with circular inclusions. International applied mechanics, 31(9), pp.754-760. DOI: 10.1007/BF00846863

Zatula, N.I. and Zatula, D.V., 2021. Approximation of density of potentials for the flat viscoelastic bodies with inclusions, bounded by a piecewise smooth contours. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, (1), pp.39-42. DOI: 10.17721/1812-5409.2021/1.4




How to Cite

Zatula, D. V., & Zatula, N. I. (2022). Mathematical modeling of the stressed state of a viscoelastic half-plane with inclusions. Bulletin of Taras Shevchenko National University of Kyiv. Physics and Mathematics, (2), 42–45.



Differential equations, mathematical physics and mechanics