Towards the solution of creep problems of thin-shelled tubular elements in isotropic nonlinear viscoelastic materials

Authors

  • V. P. Golub S.P. Timoshenko Institute of Mechanics, 03057, Kyiv, Nesterov str., 3

DOI:

https://doi.org/10.17721/1812-5409.2019/1.8

Abstract

A new approach to the creep strains analysis of thin-shelled tubular elements in isotropic nonlinear viscoelastic materials under combined loading with uniaxial tension and torsion has been proposed. The system of equations that is constructed according to the deviators proportionality hypothesis has been chosen as the creep constitutive equations the nonlinearity of viscoelastic properties in which is given with respect to the creep strain intensity and volumetric strain by the Rabotnov type models. The kernels of creep strain intensity and volumetric strain are given by the relations that establish the relationships between these kernels and one-dimensional creep kernels determined from a system of base experiments. One-dimensional tension with the measurement of longitudinal and transverse strains as well as one-dimensional tension and pure torsion with the measurement of longitudinal and shearing strains have been considered as base experiments. The functions of nonlinearity of viscoelastic properties are given by smoothing cubic splines. The problems of the analysis of longitudinal, transverse and shearing strains of thin-shelled tubular specimens made of “high density polyethylene PEHD” have been solved and experimentally approved.

Key words: nonlinear viscoelastisity, biaxial stress state, creep process.

Pages of the article in the issue: 42-45

Language of the article: Ukrainian

References

KOLTUNOV, A. (1969) Metod opredelenija objemnyh i sdvigovyh harakteristik uprugovjazkih nasledstvennyh sred po experimentam na odnoosnoe rastjazhenie (szhatie). Mehanіka polimerov. 4. рр. 754-758.

GOLUB, V.P., MASLOV, B.P., FERNATI, P.V. (2016) Identifikacija jader nasledstvennosti izotropnyh linejno-vjazkouprugih materialov pri slozhnom naprjazhennom sostojanii. 1. Superpozicija sdvigovoj i objemnoj polzuchesti. Prikl. Mehanika. 52 (2). рр. 78-90.

GOLUB, V.P., MASLOV, B.P., FERNATI, P.V. (2016) Identifikacija jader nasledstvennosti izotropnyh linejno-vjazkouprugih materialov pri slozhnom naprjazhennom sostojanii. 2. Sluchaj proporcional’nosti deviatorov. Prikl. Mehanika. 52 (6). рр. 111-125.

KREGERS, A.F., KILEVICH, M.R. (1985) Kompleksnoe issledovanie polietilena vysokoj plotnosti v uslovijah nelinejnoj polzuchesti i relaksacii naprjazhenij. Mechanika compozitnych materialov. 2. pp. 195-201.

Downloads

How to Cite

Golub, V. P. (2019). Towards the solution of creep problems of thin-shelled tubular elements in isotropic nonlinear viscoelastic materials. Bulletin of Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences, (1), 42–45. https://doi.org/10.17721/1812-5409.2019/1.8

Issue

Section

Differential equations, mathematical physics and mechanics