Mathematical model of erythrocyte in the capillary motion

Authors

  • V. V. Novytskyy Institute of Mathematics NAS of Ukraine, Kyiv, Tereshchenkivska str., 3
  • V. V. Novytskyy (Jr) Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.17721/1812-5409.2021/4.8

Keywords:

erythrocyte, arteriole, venule, variable mass

Abstract

Practical medicine requires new research to better understand the processes of blood flow through the vascular system. In particular, the processes of blood movement in capillaries, when their diameter is smaller than the diameter of erythrocytes, are of interest. It is believed that the center of mass of the erythrocyte lies on the midline of the capillary. While in the arterioles, the erythrocyte releases nutrients, so its mass decreases. When moving in the venule, the mass of the erythrocyte increases because it receives spent substances from the tissue space. The vascular wall of the capillary and its midline are modeled using the equation of the parabola, which makes it possible to calculate within the specified limits the length of the wall and the midline. The movement of an erythrocyte is described by the Meshchersky equation for bodies with variable mass. The proposed article is devoted to the construction of static models of capillaries in the norm and a dynamic model of movement in the capillary of an erythrocyte with variable mass.

Pages of the article in the issue: 56 - 61

Language of the article: Ukrainian

References

BRANKOV, G. (1981) Osnovy biomehaniki. Moskva: Mir.

KARRO, K., PEDLI, T., SHROTER, P. and SID, W. (1981) Mehanika krovoobrashcheniya. Moskva: Mir.

KUNITSYN, V.G., MOKRUSHNIKOV, P.V. and PANIN, L.Ye. (1995) Mehanizm mikrotsirkulyatsii eritrotsyta v kapillarnom rusle pri fiziologicheskom sdvige Ph. Novosibirsk: NII biohimii SO RAMN.

KOSHLYAKOV, V.N. (1993) Kratkiy kurs teoreticheskoy mehaniki. Kinematika, kinetika. Kyiv: Vyshcha shkola.

LIPMAN Bers (1975) Matematychnyy analiz. T.1. Moskva: Vysshaya shkola.

LUSHCHYK, U.B., NOVITSKIY, V.V. and KOLOSOVA, U.A. (2004) Sovremennye vozmozhnosti kapillyaroskopii. Kyiv: Istyna.

LUSHCHYK, U.B., NOVYTSKYY, V.V. (2005) Deyaki aspect prykladnoi gemodynamiky v epohu pryzhyttevyh vizualizuuchyh tehnologiy. Kyiv: Istyna.

LUSHCHYK, U.B., NOVYTSKYY, V.V. (2011) Suchasni medychni tehnologii v analitychniy angiologii. Navchal’nyy posibnyk. Kyiv: Istyna.

PISKUNOV, N.C. (1985) Differentsial’noe i integral’noe ischisleniya. T.1. Moskva: Nauka.

REGIRHER, S.A., SHADRHINA, N.H. (1994) Matematicheskoe opisanie dvizheniya krovi v mikro-sosudistom module skeletnoy myshtsy. Biofizika. 39(1). P.41-47.

FEDORCHENKO, A.M. (1975) Teoretychna mehanika. Kyiv: Vyshcha shkola.

CHAYCHENKO, G.M., TSYBENKO, V.O., SOKUR, V.D. (2003) Fiziologiya ludyny I tvaryn. Kyiv: Vyshcha shkola.

CHERNYH, A.M., ALEKSANDROV, P.N., ALEKSEEV, O.V. (1975) Mikrotsirkulyatsiya. Moskva: Meditsina.

Downloads

Published

2021-12-21

How to Cite

Novytskyy, V. V., & Novytskyy (Jr), V. V. (2021). Mathematical model of erythrocyte in the capillary motion. Bulletin of Taras Shevchenko National University of Kyiv. Physics and Mathematics, (4), 56–61. https://doi.org/10.17721/1812-5409.2021/4.8

Issue

Section

Differential equations, mathematical physics and mechanics