Hereditary creep of isotropic composites of random structure under a complex stress state

Authors

  • B. P. Maslov S.P. Timoshenko Institute of Mechanics NAS Ukraine, 03057, Kyiv, 3 Nesterov Str.

DOI:

https://doi.org/10.17721/1812-5409.2021/3.13

Keywords:

hereditary creep, polymer, isotropic composite, prediction

Abstract

Nonlinear hereditary creep problem of the mechanics of composites is solved within the framework of a second-order theory. The hereditary functionals are used to construct general constitutive relations. A stochastic boundary value problem for determining the stress concentration and its relaxation in metal matrix composite (PMC) is solved in Laplace-Carson image space. Shapery's correspondence principle for quasi-linear viscoelastic media is generalised on the hereditary creep problem and the method of successive approximation is used. The reduced creep functions and the stress concentration parameters are determined. Examples are given showing the importance of the mutual influence of nonlinear elastic and viscous properties of the components on stress redistribution near inclusions with possibility to predicting the long-term strength.

Pages of the article in the issue: 77 - 80

Language of the article: Ukrainian

References

KHOROSHUN L.P., MASLOV B.P., SHIKULA E.N, NAZARENKO L.V. Statistical Mechanics and Effective Properties of Materials. – Vol. 3 of the 12-volume series Mechanics of Composites, 1993.- 390 p. (in Russian).

Golub V.P., Maslov B.P., Fernaty P.V. K opredelenyiu parametrov yader nasledstvennosty yzotropnykh lyneino-viazkoupruhykh materyalov pry slozhnom napriazhennom sostoianyy // Teoret. y prykl. mekhanyka, 2013. – Tom 53, №7. – S. 53-64.

Maslov B.P. Zastosuvannia kvaziliniinoi modeli viazkopruzhnosti dlia prohnozuvannia povzuchosti neodnoridnoho heolohichnoho seredovyshcha // Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Seriia fizyko-matematychni nauky, 2019, №1. – S. 122-

Asaro R.J., Lubarda V. A. Mechanics of Solids and Materials. Cambridge University Press, 2006, 880 p.

Christensen R.M. Theory of viscoelasticity. An Introduction. – New-York and London: Academic Press Inc., 2nd ed., 1982. – 370 p.

Golub V.P., Maslov B.P., and Fernati P.V. Identification of the Hereditary Kernels of Isotropic Linear Viscoelastic Materials in Combined Stress State. I. Superposition of Shear and Bulk Creep // International Applied Mechanics, 2016. – Vol. 52, N2, pp. 165-174.

Golub V.P., Maslov B.P., and Fernati P.V. Identification of the Hereditary Kernels of Isotropic Linear Viscoelastic Materials in Combined Stress State. II. Deviators Proportionality // International Applied Mechanics, 2016. – Vol. 52, N6, pp. 111-125.

Maslov B.P. Combined numerical and analytical determination of Poissons ratio for viscoelastic isotropic materials // International Applied Mechanics, 2018. – 54, N2, pp. 220-230.

Schapery R.A. Correspondence principles and a generalized integral for large deformation and fracture analysis of viscoelastic media // International Journal of Fracture, July 1984. – Vol. 25, Issue 3, pp. 195-223.

Downloads

Published

2021-12-07

How to Cite

Maslov, B. P. (2021). Hereditary creep of isotropic composites of random structure under a complex stress state. Bulletin of Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences, (3), 77–80. https://doi.org/10.17721/1812-5409.2021/3.13

Issue

Section

Differential equations, mathematical physics and mechanics