Investigation by X-ray photoelectron spectroscopy of the process of TiC synthesis during annealing of ТiН2/ТiО2/С in vacuum

  • T. V. Kryshchuk V.I. Vernadsky Institute of General and Inorganic Chemistry of National Academy of Sciences of Ukraine, 03142, Kyiv, Aсademiс Palladin Avenue, 32/34
  • O. M. Korduban V.I. Vernadsky Institute of General and Inorganic Chemistry of National Academy of Sciences of Ukraine, 03142, Kyiv, Aсademiс Palladin Avenue, 32/34 https://orcid.org/0000-0003-4401-0203
  • V. M. Ogenko V.I. Vernadsky Institute of General and Inorganic Chemistry of National Academy of Sciences of Ukraine, 03142, Kyiv, Aсademiс Palladin Avenue, 32/34 https://orcid.org/0000-0002-3243-5960
  • M. M. Medvedskij Main astronomical observatory of National Academy of Sciences of Ukraine, 03143, Kyiv, 27 Akademika Zabolotnoho Str.

Abstract

Small dimensional transition metal carbides (MXenes) are promising materials for the development of photocatalysts and are highly efficient cocatalysts for industrial TiO_2 (P25). Thus, in the Ti_3C_2@TiО_2 nanocomposite obtained by layering Ti_3C_2 nanoplates, the ability to separate charge carriers increases due to the high electrical conductivity of TiC_{1-х}. The task of forming the TiC_{1-х}@TiО_{2-х} nanocomposite by direct synthesis with n-TiO_2 is promising, which allows to increase the quality of contact between the shell and the nanocomposite core and to reduce the number of intermediate stages of synthesis. In addition, highly dispersed TiC has high values of hardness, melting point, modulus of elasticity and shear and has the prospect of use in materials science in plasma spraying coatings. In work ТіС was synthesized on the surface of TiO_2 - the shell of the modified micropowder TiH_2/TiO_2/С during reductive annealing in vacuum using TiH_2 as a source of atomic hydrogen. After a series of annealing at 535 ºС - 600 ºС, the Ti2p- C1s- and O1s- spectra of surface atoms were obtained. The main stages of TiC synthesis in the TiO_2/С conversion reaction were established by the XPS method. The use of TiH_2 as a source of atomic hydrogen in nanosystems of the «core/shell» type is proposed for local synthesis on the surface of nanoobjects in a vacuum or inert atmosphere.

Key words: X-ray photoelectron spectroscopy, XPS, titanium carbide, TiC, TiO_2, nanopowders.

Pages of the article in the issue: 85 - 94

Language of the article: Ukrainian

References

NGUYEN, V. H. & NGUYEN, B. S. & HU, C. et al. (2020) Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review Nanomaterials. Vol. 10, No 4, p. 602.

BENCHAKAR, M. & LOUPIAS, L. & GARNEROТАІН, C. (2020) One MAX phase, different MXenes: a guideline to understand the crucial role of etching conditions on Ti3C2TX surface chemistry. Applied Surface Science. No 530, p. 147209.

SATHEESHKUMAR, E. & MAKARYAN, T. & MELIKYAN, A. et al. (2016). One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS Sci. Rep. No 6, p. 32049.

PENG, C. & WANG, H. & YU, H. & PENG F. (2017) (111) TiO2-x /Ti3C2: synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity Mater. Res. Bull. No 89, p. 16–25.

YUAN, W. & CHENG, L. & ZHANG, Y. et al. (2017) 2D‐Layered Carbon/TiO2 Hybrids Derived from Ti3C2Mxenes for Photocatalytic Hydrogen Evolution under Visible Light Irradiation Adv. Mater. Interfaces. No , p. 1700577.

DING, X. H. & LI, Y. C. & LI, C. H. (2019) 2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterostructure for high photocatalytic activity J. Mater. Sci. No 54, p. 9385–9396.

YE, M. & WANG, X. & LIU, E. (2018) Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction using a Surface-Alkalinized Titanium Carbide MXene as Co-catalyst ChemSusChem. No 11, p. 1606–1611.

IGNASZAK, A. & SONG, C. & ZHU, W. (2012) Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells Electrochim. Acta. No 69, p. 397−405.

BIHARI NAYAK, B. & DASH, T. & PRADHAN, S. (2020) Spectroscopic evaluation of tungsten carbide-titanium carbide composite prepared by arc plasma melting Journal of Electron Spectroscopy and Related Phenomena. No 254, p. 146993.

КRUTSKYI, YU. L. & LOZHKINA, E. A. & МАКSYMOVSKYI E. A. et al. (2017) Primenenie nanovoloknistogo ugleroda dlya polucheniya visokodispersnogo karbida titana Khimicheskaya tekhnologiya. No 254. p. 146993.

GHOSH, S. & RANJAN, P. & KUMAAR, A. (2019) Synthesis of titanium carbide nanoparticles by wire explosion process and its application in carbon dioxide adsorption J. Alloy. Copd. No 794, p. 645–653.

Y. ZHANG, C. WANG, Y. LIU (2017) Surface Characterizations of TiH2 Powders before and after Dehydrogenation Appl. Surf. Sci. No 410, p. 177–185.

SHPAK, A. P. & KORDUBAN, A. M. & KULIKOV, L. M. et al. (2010) XPS studies of the surface of nanocrystalline tungsten disulfide J. Electron. Spectrosc. Relat. Phenom. No 181, p. 234–238.

BRIGGS, D. & SEACH M. P. (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy New York: John Wiley & Sons, Chichester.

WAGNER, C. D. & MOULDER, J. F. & DAVIS, L. E. & RIGGS, W. M. (1979) Handbook of X-ray Photoelectron Spectroscopy New York: Perking-Elmer Corp.

NEFEDOV V. I. (1984) Rentgenoelektron-naya spektroskopiya khymicheskikh soedinenii Moskva: Khymiya.

GONG Y. & TU, R. & GOTO, T. (2013) High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD Mater. Res. Bull. №48, p. 2766–2770.

ZHANG, L. & KOKA, R. V. (1998) A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy Mater. Chem. Phys. No 57, p. 23–32.

NÄSLUND L. & PERSSON, P. & ROSEN, J. (2020) X-ray Photoelectron Spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC Provides Evidence for the Electrostatic Interaction between Laminated Layers in MAX-Phase Materials J. Phys. Chem. No 124, p. 27732–27742.

JASTRZĘBSKA, A. M. & SZUPLEWSKA, A. & ROZMYSŁOWSKA-WOJCIECHOWSKA, A. et al. (2020) On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications 2D Mater. No 7, p. 025018.

HALIM, J. & PERSSON, L. & EKLUND, P. (2018) Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film RSC Adv. No 8, p. 36785–36790.

SCHULTZ, T. & FREY, N. C. & HANTANASIRISAKUL, K. et al. (2019) Surface Termination Dependent Work Function and Electronic Properties of Ti3C2Tx Mxene Chem. Mater. No 31, p. 6590–6597.

KUMAR, P. M. & BADRINARAYANAN, S. & SASTRY, M. (2000) Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states Thin Solid Films. No 358, p. 122–130.

KUMAR, S. & LEI, Y. & ALSHAREEF, N. H. et al (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker Biosens. Bioelectron. No 121, p. 243–249.

GANGULY, A. & SHARMA, S. & PAPAKON-STANTINOU, P. & HAMILTON J. (2011) Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution in Situ X-ray-Based Spectroscopies J. Phys. Chem. C. No 115, p. 17009–17019.

KERBER, S. J. & BRUCKNER, J. J. & WOZNIAK, K. et al (1996) The nature of hydrogen in x-ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding J. Vac. Sci. Technol. A. No 14.

XING, M. & SHEN, F. & QIU, B. & ZHAN, J. (2014) Highly-dispersed Boron-doped Graphene Nanosheets Loaded with TiO2 Nanoparticles for Enhancing CO2 Photoreduction Scientific Reports. No 4, p. 6341.

WANG, H. & HU, Y. & ZHAO, J. J. et al (2014) Holey Reduced Graphene Oxide Nanosheets for High Performance Room Temperature Gas Sensing D J. Mater. Chem. A. No 2, p. 17415–17420.

MAIBACH, J. & XU, C. & ERIKSSON, S. K. (2015) A high pressure X-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system Rev. Sci. Instrum. No 86, p. 044101.

SCOFIELD J. H. (1976) Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV / Scofield. Journal of Electron Spectroscopy and Related Phenomena. No 8, p. 129–137.

PENN D. R. (1976) Quantitative chemical analysis by ESCA J. Electron. Spectrosc. Relat. Phenom. No 9, p. 29–40.

KORDUBAN, О. & KRYSHCHUK, T. & ТRACHEVSKIJ, V. & MEDVEDSKIJ, М. (2020) Fоrmuvannya plazmovikh nanodispersnikh pokrittiv na osnovi elektrovibukhovikh nanoporoshkiv oksidu volframu Меtallofiz. Novejshie tekhnol. No 1.

How to Cite
Kryshchuk, T. V., Korduban, O. M., Ogenko, V. M., & Medvedskij, M. M. (1). Investigation by X-ray photoelectron spectroscopy of the process of TiC synthesis during annealing of ТiН2/ТiО2/С in vacuum. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, (4), 85-94. https://doi.org/10.17721/1812-5409.2020/4.12
Section
Modern Physics