From subgaussianity to stochastic approximation and modelling

Authors

DOI:

https://doi.org/10.17721/1812-5409.2020/3.8

Abstract

The modern theory of subgaussian random variables and processes was created by independent efforts of several research schools from France, USA and Ukraine. Professor Yu.Kozachenko was a founder and leading figure of this research direction of the Ukrainian probability school. An outline of Professor Yu.Kozachenko's contribution to the theory of sub-Gaussian random variables and processes is presented. The class of $\varphi$-subgaussian random variables is introduced and its key property is discussed. Then it is demonstrated how these results can be used in stochastic approximation and modeling. In particular, applications to approximation of trajectories of $\varphi$-subgaussian random processes with given accuracy and reliability are discussed. Two important clases of algorithms from the signal processing theory, the Shannon sampling method and wavelet decompositions, are used as examples. Some personal memories of the author about Yu. Kozachenko are included at the end of the paper.

Key words: Yu.Kozachenko, subgaussian, stochastic approximation, stochastic modelling.

Pages of the article in the issue: 84 - 88

Language of the article: Ukrainian

References

Buldygin V.V., Kozachenko Yu.V. Metric Characterization of Random Variables and Random Processes / V.V. Buldygin, Yu.V. Kozachenko. - Providence R.I.: American Mathematical Society, 2000. - 257 p.

Dudley R. M. Universal Donsker classes and metric entropy / R. M. Dudley // Annals of Probability. - 1987. - Vol. 15. - P. 1306-1326.

Dudley R. M. Uniform central limit theorems / R. M. Dudley. - Cambridge: Cambridge University Press, 1999. - 436 p.

Fernique X. Regularite des trajectoires des fonctions aleatoires gaussiennes / X. Fernique. In Ecole d'Ete de Probabilites de Saint-Flour IV-1974. Springer, 1975. - pp. 1-96.

Kahane J.P. Properties locales des fonctions a series de Fouries aleatories / J.P. Kahane // Studia Math. - 1960. - Vol. 19, no. 1. - P. 1-25.

M.A. Krasnosel'skii, Ya.B. Rutickii. Convex Functions and Orlicz Spaces / M.A. Krasnosel'skii, Ya.B. Rutickii. - Groningen: Noordhof, 1961. - 249 p.

Kozachenko Yu. V. Suffcient conditions of continuity with probability one of sub-Gaussian random processes / Yu. V. Kozachenko // Dopovidi Akad. Nauk Ukr.SSR, Ser. A. - 1968. - No. 2. P. 113-115.

Kozachenko Yu., Olenko A. Whittaker-Kotel'nikov-Shannon approximation of $varphi$-sub-Gaussian random processes / Yu. Kozachenko, A. Olenko // J. Math. Anal. Appl. - 2016. - Vol. 443(2). - P. 926-946.

Kozachenko Yu., Olenko A. Aliasing-Truncation Errors in Sampling Approximations of Sub-Gaussian Signals / Yu. Kozachenko, A. Olenko // IEEE Transactions on Information Theory. - 2016. - Vol. 62, no. 10. - P. 5831-5838.

Kozachenko Yu., Olenko A., Polosmak O. On convergence of general wavelet decompositions of nonstationary stochastic processes/ Yu. Kozachenko, A. Olenko, O. Polosmak // Electron. J. Probab. - 2013. - Vol. 18, no. 69. - P. 1-21.

Kozachenko Y., Pogorilyak O., Rozora I., Tegza A. Simulation of Stochastic Processes with Given Accuracy and Reliability / Y.Kozachenko, O.Pogorilyak, I.Rozora, A.Tegza. - ISTE Press Ltd and Elsevier Ltd Oxford, 2016. - 346 p.

Ledoux M., Talagrand M. Probability in Banach spaces. Isoperimetry and processes / M. Ledoux, M. Talagrand. - Berlin: Springer-Verlag, 1991. - 482 p.

Talagrand M. The generic chaining. Upper and lower bounds of stochastic processes / M. Talagrand. - Berlin: Springer-Verlag, 2005. - 593 p.

Talagrand M. Upper and lower bounds for stochastic processes. Modern methods and classical problems / M. Talagrand. Heidelberg: Springer, 2014. 626 p.

Downloads

How to Cite

Olenko, A. Y. (2020). From subgaussianity to stochastic approximation and modelling. Bulletin of Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences, (3), 84–88. https://doi.org/10.17721/1812-5409.2020/3.8

Issue

Section

Algebra, Geometry and Probability Theory