Probabilistic models of water resources management on urbanized areas

Authors

  • N. M. Kizilova V.N. Karazin Kharkiv National University, 61022, Kharkov, Svobody sq., 4, Ukraine https://orcid.org/0000-0001-9981-7616
  • N. L. Rychak V.N. Karazin Kharkiv National University, 61022, Kharkov, Svobody sq., 4, Ukraine

DOI:

https://doi.org/10.17721/1812-5409.2020/4.3

Keywords:

water quality, global climate change, mathematical modeling, probabilistic models

Abstract

Gradual global climate change poses new challenges to the mathematical sciences, which are related to forecasting of meteorological conditions, preparing the infrastructure for possible rains, storms, droughts, and other climatic disasters. One of the most common approaches is synthetic regression-probability models, which use the spatio-temporal probability density functions of precipitation level. This approach is applied to the statistics of precipitation in the Kharkiv region, which shows the tendency to a gradual increase in air temperature, high indices of basic water stress, indices of drought and riverside flood threats. Open data on temperature distributions and precipitation were processed using various probability statistics. It is shown that the lognormal distribution most accurately describes the measurement data and allows making more accurate prognoses. Estimates of drought and flood probabilities in Kharkiv region under different scenarios of climate change dynamics have been carried out. The results of the study can be used for management of water resources on urban territories at global climate warming.

Pages of the article in the issue: 22 - 27

Language of the article: Ukrainian

Author Biographies

N. M. Kizilova, V.N. Karazin Kharkiv National University, 61022, Kharkov, Svobody sq., 4, Ukraine

факультет математики і інформатики, професор

N. L. Rychak, V.N. Karazin Kharkiv National University, 61022, Kharkov, Svobody sq., 4, Ukraine

навчально-науковий інститут екології, кафедра екології та неоекології. доцент

References

Causes, Impacts and Solutions to Global Warming (2013) / I. DINCER, C.O. COLPAN, F. KADIOGLU (eds.), Springer.

KIZILOVA N.N., RYCHAK N.L., CHEBUKIN D.S., LUKIJENKO M.V. (2020) Ecological assessment of surface water quality in the rainless period in the conditions of urban catchment. Visnyk of V.N. Karazin Kharkov National University, Ser. «Geology. Geography. Ecology». Vol. 53. p.

KIZILOVA N.N., RYCHAK N.L., RUDNEV Y.I. (2019) The system dynamics approach to water quality control in urban areas. Systems of information treatment. Vol. 4(159). p.87–92. doi:10.30748/soi.2019.159.10

MAMMAN M.J., MARTINS O.Y., IBRAHIM J., SHABA M.I. (2017) Evaluation of Best-Fit Probability Distribution Models for the Prediction of Inflows of Kainji Reservoir, Niger State, Nigeria. Air, Soil and Water Research. Vol.10. Р. 1–7 doi:201710.1177/1178

LANGAT P.K., KUMAR L., KOECH R. (2019) Identification of the Most Suitable Probability Distribution Models for Maximum, Minimum, and Mean Streamflow. Water. Vol. 11. p. 734-741. doi:10.3390/w11040734

SORDO-WARD Á., GRANADOS I., MARTÍN-CARRASCO F., GARROTE L. (2016) Impact of Hydrological Uncertainty on Water Management Decisions. Water Resourses Management. Vol. 30(14). p. 323-339. doi:10.1007/s11269-016-1505-5

BALABUKH V., LAVRYNENKO O., BILANIUK V., et al. Extreme Weather Events in Ukraine: Occurrence and Change. / P.J. Sallis, ed. Intech Open, 2018. – 228 p. doi:10.5772/intechopen.77306

BULDYGIN V.V., KOZACHENKO Y.V. (1998) Metric characteristics of random variables and processes, К.: ТВіМС. 290 p.

NATHAN R., JORDAN P., SCORAH M., et al. (2016) Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation. Journal of Hydrology. Vol. 543. p. 706–720. doi: 10.1016/j.jhydrol. 2016.10.044

FOUFOULA-GEORGIOU E. A. (1989) probabilistic storm transposition for estimating exceedance probabilities of extreme precipitation depths. Water Resourses Research. Vol. 25(5). p. 799–815. doi: 10.1029/WR025i005p00799

SCHAEFER M.G. (1990) Regional analysis of precipitation annual maxima in Washington State. Water Resourses Research. Vol. 26. p. 119–131. doi: 10.1029/WR026i001p

YEVJEVICH V. (1984) Probability and Statistics in Hydrology. Water resources Publ., Colorado, USA. 312 p.

Downloads

How to Cite

Kizilova, N. M., & Rychak, N. L. (2020). Probabilistic models of water resources management on urbanized areas. Bulletin of Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences, (4), 22–27. https://doi.org/10.17721/1812-5409.2020/4.3

Issue

Section

Differential equations, mathematical physics and mechanics

Most read articles by the same author(s)