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Дослiджується задача оптимального оцiнювання лiнiйних функцiоналiв Aζ =
∑∞

j=1 a(j)ζ(j),
вiд невiдомих значень перiодично корельованої стохастичної послiдовностi ζ(j) на основi спо-
стережень послiдовностi ζ(j) + θ(j) в точках j ∈ {. . . ,−n, . . . ,−2,−1, 0} \ S, S =

∪s−1
l=1 {−Ml ·

T + 1, . . . ,−Ml−1 · T − Nl · T}, де θ(j) - некорельована з ζ(j) перiодично корельована стохасти-
чна послiдовнiсть. Отримано формули для обчислення значень середньоквадратичних похибок
та спектральних характеристик оптимальних оцiнок функцiоналу Aζ для послiдовностей з
вiдомими спектральними щiльностями. Формули, що визначають найменш сприятливi спе-
ктральнi щiльностi та мiнiмаксно-робастнi спектральнi характеристики оптимальних лiнiй-
них оцiнок функцiоналiв пропонуються у випадку, коли спектральнi щiльностi послiдовностей
точно невiдомi, а вказанi множини допустимих спектральних щiльностей.

Результати дослiдження доповiдались на Мiжнароднiй науковiй конференцiї “Modern Stochasti-
cs: Theory and Applications. V” (MSTA-V).

Ключовi слова: Перiодично корельована стохастична послiдовнiсть, мiнiмаксно-робастна
оцiнка, найменш сприятлива спектральна щiльнiсть, мiнiмаксно-робастна спектральна хара-
ктеристика.

The problem of optimal estimation of the linear functionals Aζ =
∑∞

j=1 a(j)ζ(j), which depend
on the unknown values of a periodically correlated stochastic sequence ζ(j) from observations of the
sequence ζ(j) + θ(j) at points j ∈ {...,−n, ...,−2,−1, 0} \ S, S =

∪s−1
l=1 {−Ml · T + 1, . . . ,−Ml−1 · T −

Nl ·T}, is considered, where θ(j) is an uncorrelated with ζ(j) periodically correlated stochastic sequence.
Formulas for calculation the mean square error and the spectral characteristic of the optimal estimate
of the functional Aζ are proposed in the case where spectral densities of the sequences are exactly
known. Formulas that determine the least favorable spectral densities and the minimax-robust spectral
characteristics of the optimal estimates of functionals are proposed in the case of spectral uncertainty,
where the spectral densities are not exactly known while some sets of admissible spectral densities are
specified.

Key Words: Periodically correlated sequence, optimal linear estimate, mean square error, least
favourable spectral density matrix, minimax spectral characteristic.
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Introduction

W.R. Bennett [1] in 1958 started to explore
cyclostationarity as a phenomenon and property
of the process, which describes signals in
channels of communication. Studying the stati-
stical characteristics of information transmissi-
on, he calls the group of telegraph signals the
cyclostationary process, that is the process whose
group of statistics changes periodically with ti-
me. W.A. Gardner [5], [6] highlights the greatest
similarity of cyclostationary processes, which are
a subclass of nonstationary processes, with stati-
onary processes. He presented the bibliography
of works [7] in which properties and applications
of cyclostationary processes were investigated ti-
ll 1992. Recent developments and applications of
cyclostationary signal analysis are reviewed in the
papers by A. Napolitano [30], [31]. Note, that in
other sources cyclostationary processes are called
periodically stationary, periodically nonstationary,
periodically correlated. We will use the term peri-
odically correlated processes. E.G. Gladyshev [8]
in 1961 was the first who started the analysis of
spectral properties and representation of periodi-
cally correlated sequences based on its connection
with vector stationary sequences. He formulated
the necessary and sufficient conditions for determi-
ning of periodically correlated sequence in terms
of the correlation function. A. Makagon with
coauthrs [17], [18] presented detailed spectral
analysis of periodically correlated sequences. Main
ideas of the research of periodically correlated
sequences are outlined in the book by H.L. Hurd
and A. Miamee [12].

The linear extrapolation and interpolation
problems for stationary stochastic processes under
the condition that spectral densities are known
exactly were first introduced by A. N. Kolmogorov
[15]. Solutions of the extrapolation and filtering
problems for stationary processes and sequences
with rational spectral densities were proposed by
N. Wiener [36] and A. M. Yaglom [37]. Esti-
mation problems for vector stationary sequences
were investigated by E. J. Hannan [11] and
Yu. A. Rozanov [34]. Since stochastic processes
often accompanied with undesirable noise it is
naturally to assume that the exact value of
spectral density is unknown and the model of
process is given by a set of restrictions on spectral
density. K.S. Vastola and H.V. Poor [35] have
demonstrated that the described procedure can

result in significant increasing of the value of error.
This is a reason for searching estimates which are
optimal for all densities from a certain class of
admissible spectral densities. These estimates are
called minimax since they minimize the maximal
value of the error of estimates. A survey of results
in minimax (robust) methods of data processing
can be found in the paper by Kassam and Poor
[14].

Ulf Grenander [10] was the first who proposed
the minimax approach to the extrapolation
problem for stationary processes. Formulation and
investigation of the problems of extrapolation,
interpolation and filtering of linear functionals
which depend on the unknown values of stati-
onary sequences and processes from observati-
ons with and without noise are presented by
M.P. Moklyachuk [22], [23]. Results of investigati-
on of the problems of optimal estimation of vector-
valued stationary sequences and processes are
published by M.P. Moklyachuk, O.Yu. Masyutka
[25], [26], [27]. In their book M.M Luz and M.P.
Moklyachuk [16] presented results of investigati-
on of the minimax estimation problems for linear
functionals which depends on unknown values of
stochastic sequence with stationary increments.
I.I. Golichenko and M.P. Moklyachuk [2], [3], [4],
[24] investigated the interpolation, extrapolation
and filtering problems of linear functionals from
periodically correlated stochastic sequences and
processes. The interpolation and filtering problems
for stationary sequences with missing values was
examined by M.P. Moklyachuk, O.Yu. Masyutka
and M.I.Sidei [19], [21], [28], [29]. The interpolati-
on problem of linear functionals from periodi-
cally correlated stochastic sequences with missing
observations was investigated by I.I. Golichenko
and M.P. Moklyachuk in [9].

In this paper we presented results of investi-
gation of the problem of optimal linear estimati-
on of the functional Aζ =

∑∞
j=1 a(j)ζ(j), whi-

ch depends on the unknown values of a peri-
odically correlated stochastic sequence ζ(j) from
observations of the sequence ζ(j) + θ(j) at points
j ∈ {. . . ,−n, . . . ,−2,−1, 0} \ S, S =

∪s−1
l=1 {−Ml ·

T + 1, . . . ,−Ml−1 · T − Nl · T}, where θ(j) is
an uncorrelated with ζ(j) periodically correlated
stochastic sequence. Formulas for calculation of
the mean square error and the spectral characteri-
stic of the optimal estimate of the functional Aζ
are proposed in the case where spectral densities
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are exactly known. Formulas that determine the
least favorable spectral densities and the minimax-
robust spectral characteristics of the optimal esti-
mates of functionals are proposed in the case of
spectral uncertainty, where the spectral densities
are not exactly known while some sets of admissi-
ble spectral densities are specified.

1 Periodically correlated and multidi-
mensional stationary sequences

The term periodically correlated process was
introduced by E. G. Gladyshev [8] while
W. R. Bennett [1] called random and periodic
processes cyclostationary process.

Periodically correlated sequences are
stochastic sequences that have periodic structure
(see the book by H. L. Hurd and A. Miamee [12]).

Definition 1. A complex valued stochastic
sequence ζ(n), n ∈ Z with zero mean, Eζ(n) = 0,
and finite variance, E|ζ(n)|2 < +∞, is called
cyclostationary or periodically correlated (PC) wi-
th period T (T -PC) if for every n,m ∈ Z

Eζ(n+T )ζ(m+ T ) = R(n+T,m+T ) = R(n,m)
(1)

and there are no smaller values of T > 0 for which
( 1) holds true.

Definition 2. A complex valued T-variate
stochastic sequence ξ⃗(n) = {ξν(n)}Tν=1 , n ∈ Z
with zero mean, Eξν(n) = 0, ν = 1, . . . , T , and
E||ξ⃗(n)||2 <∞ is called stationary if for all n,m ∈
Z and ν, µ ∈ {1, . . . , T}

Eξν(n)ξµ(m) = Rνµ(n,m) = Rνµ(n−m).

If this is the case, we denote R(n) =
{Rνµ(n)}Tν,µ=1 and call it the covariance matrix of
T-variate stochastic sequence ξ⃗(n).

Proposition 1.1. (E. G. Gladyshev [8]). A
stochastic sequence ζ(n) is PC with period T if
and only if there exists a T -variate stationary
sequence ξ⃗(n) = {ξν(n)}Tν=1 such that ζ(n) has
the representation

ζ(n) =

T∑
ν=1

e2πinν/T ξν(n), n ∈ Z. (2)

The sequence ξ⃗(n) is called generating sequence of
the sequence ζ(n).

Proposition 1.2. (E. G. Gladyshev [8]). A
complex valued stochastic sequence ζ(n), n ∈ Z wi-
th zero mean and finite variance is PC with period
T if and only if the T -variate blocked sequence ζ⃗(n)
of the form

[ζ⃗(n)]p = ζ(nT + p), n ∈ Z, p = 1, . . . , T (3)

is stationary.

We will denote by f ζ⃗(λ) =
{
f ζ⃗νµ(λ)

}T

ν,µ=1

the matrix valued spectral density function
of the T -variate stationary sequence ζ⃗(n) =
(ζ1(n), . . . , ζT (n))

⊤ arising from the T -blocking
(3) of a univariate T-PC sequence ζ(n).

2 The classical projection method of linear
extrapolation

Let ζ(j) and θ(j) be uncorrelated T-PC stochastic
sequences. Consider the problem of optimal linear
estimation of the functional

Aζ =
∞∑
j=1

a(j)ζ(j),

that depends on the unknown values of T-PC
stochastic sequence ζ(j), based on observati-
ons of the sequence ζ(j) + θ(j) at points j ∈
{...,−n, ...,−1, 0} \ S, S =

∪s
l=1{−Ml · T +

1, . . . ,−Ml−1 · T − Nl · T}, Ml =
∑l

k=0(Nk +
Kk), N0 = K0 = 0,.

Let assume that the coefficients a(j), j ≥ 1
which determine the functional Aζ satisfy condi-
tion

∞∑
j=1

|a(j)| <∞ (4)

and are of the form

a(j) = a

((
j −

[
j

T

]
T

)
+

[
j

T

]
T

)
=

= a(ν + j̃T ) = a(j̃)e2πij̃ν/T , (5)

ν = 1, . . . , T, j̃ ≥ 0,

where ν = T and j̃ = λ− 1, if j = T · λ, λ ∈ Z, or

a(j) = a(T ·λ) = a(T+(λ−1)T ) = a(λ−1)e2πi(λ−1)T/T .

Under the condition (4) the functional Aζ has the
finite second moment.

Using Proposition 1.2, the linear functional
Aζ can be written as follows

Aζ =

∞∑
j=1

a(j)ζ(j) =

∞∑
j̃=0

a(j̃)

T∑
ν=1

e2πij̃ν/T ζ(ν+j̃T ) =
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=

∞∑
j̃=0

T∑
ν=1

a(j̃)e2πij̃ν/T ζν(j) =

∞∑
j̃=0

a⃗⊤(j̃)ζ⃗(j̃) = Aζ⃗,

where

a⃗⊤(j̃) =
(
a1(j̃), . . . , aT (j̃)

)
,

aν(j̃) = a(j̃)e2πij̃ν/T , ν = 1, . . . , T, (6)

ζ⃗(j̃) =
{
ζν(j̃)

}T

ν=1
is T -variate stationary

sequence, obtained by the T -blocking (3) of uni-
variate T -PC sequence ζ(j), j ≥ 1.

Let ζ⃗(j) and θ⃗(j) be uncorrelated T-variate
stationary stochastic sequences with the spectral

density matrices f ζ⃗(λ) =
{
f ζ⃗νµ(λ)

}T

ν,µ=1
and

f θ⃗(λ) =
{
f θ⃗νµ(λ)

}T

ν,µ=1
, respectively. Consider the

problem of optimal linear estimation of the functi-
onal

Aζ⃗ =

∞∑
j̃=0

a⃗⊤(j̃)ζ⃗(j̃),

that depends on the unknown values of sequence
ζ⃗(j̃), based on observations of the sequence
ζ⃗(j̃) + θ⃗(j̃) at points j̃ ∈ {...,−n, ...,−1} \ S̃,
S̃ =

∪s
l=1{−Ml, . . . ,−Ml−1 − Nl − 1}, Ml =∑l

k=0(Nk +Kk), N0 = K0 = 0,.
Let the spectral densities f ζ⃗(λ) and f θ⃗(λ)

satisfy the minimality condition∫ π

−π
Tr
[
(f ζ⃗(λ) + f θ⃗(λ))−1

]
dλ < +∞. (7)

Condition (7) is necessary and sufficient in order
that the error-free extrapolation of unknown
values of the sequence ζ⃗(j) + θ⃗(j) is impossible
[34].

Denote by L2(f) the Hilbert space of vector
valued functions b⃗(λ) = {bν(λ)}Tν=1 that are
integrable with respect to a measure with the
density f(λ) = {fνµ(λ)}Tν,µ=1:∫ π

−π
b⃗⊤(λ)f(λ)⃗b(λ)dλ =

=

∫ π

−π

T∑
ν,µ=1

bν(λ)fνµ(λ)bµ(λ)dλ < +∞.

Denote by Ls
2(f) the subspace in L2(f)

generated by functions

eij̃λδν , δν = {δνµ}Tµ=1 , ν = 1, . . . , T,

j̃ ∈ {. . . ,−n, . . . ,−1} \ S̃,

where δνν is the Kronecker delta: δνν = 1, δνµ = 0
for ν ̸= µ.

Every linear estimate Âζ⃗ of the functional Aζ⃗
from observations of the sequence ζ⃗(j̃) + θ⃗(j̃) at
points j̃ ∈ {...,−n, ...,−1} \ S̃ has the form

Âζ⃗ =

∫ π

−π
h⃗⊤(eiλ)(Z ζ⃗(dλ) + Z θ⃗(dλ)) =

=

∫ π

−π

T∑
ν=1

hν(e
iλ)(Z ζ⃗

ν (dλ) + Z θ⃗
ν (dλ)), (8)

where Z ζ⃗(∆) =
{
Z ξ⃗
ν(∆)

}T

ν=1
and Z θ⃗(∆) ={

Z η⃗
ν (∆)

}T

ν=1
are orthogonal random measures

of the sequences ζ⃗(j̃) and θ⃗(j̃), and h⃗(eiλ) ={
hν(e

iλ)
}T
ν=1

is the spectral characteristic of the

estimate Âζ⃗. The function h⃗(eiλ) ∈ Ls
2(f

ζ⃗ + f θ⃗).
The mean square error ∆(⃗h; f ζ⃗ , f θ⃗) of the esti-

mate Âζ⃗ is calculated by the formula

∆(⃗h; f ζ⃗ , f θ⃗) = E|Aζ⃗ − Âζ⃗|2 =

1

2π

∫ π

−π

[
A(eiλ)− h⃗(eiλ)

]⊤
f ζ⃗(λ)

[
A(eiλ)− h⃗(eiλ)

]
dλ+

(9)

+
1

2π

∫ π

−π
h⃗⊤(eiλ)f θ⃗(λ)⃗h(eiλ)dλ,

A(eiλ) =
∞∑
j̃=0

a⃗(j̃)eij̃λ.

The spectral characteristic h⃗(f ζ⃗ , f θ⃗) of the opti-
mal linear estimate of Aζ⃗ minimizes the mean
square error

∆(f ζ⃗ , f θ⃗) = ∆(⃗h(f ζ⃗ , f θ⃗); f ζ⃗ , f θ⃗) =

= min
h⃗∈Ls

2(f
ζ⃗+f θ⃗)

∆(⃗h; f ζ⃗ , f θ⃗) = min
Âζ⃗

E|Aζ⃗ − Âζ⃗|2.

(10)

With the help of the Hilbert space projection
method proposed by A. N. Kolmogorov [15] we
can find a solution of the optimization problem

(10). The optimal linear estimate Âζ⃗ is a projecti-
on of the functional Aζ⃗ on the subspace Hs[ζ⃗ +
θ⃗] = Hs[ζν(j̃) + θν(j̃), j̃ ∈ {...,−n, ...,−1}\S̃, ν =
1, . . . , T ] of the Hilbert space H = {ζ : Eζ =
0, E|ζ|2 < ∞}, generated by values ζν(j̃) +
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θν(j̃), j̃ ∈ {...,−n, ...,−1}\S̃, ν = 1, . . . , T . The
projection is characterized by following conditions

1) Âζ⃗ ∈ Hs[ζ⃗ + θ⃗],

2) Aζ⃗ − Âζ⃗ ⊥ Hs[ζ⃗ + θ⃗].
The condition 2) gives us the possibility to

derive the formula for spectral characteristic of the
estimate

h⃗⊤(f ζ⃗ , f θ⃗) =(
A⊤(eiλ)f ζ⃗(λ)− C⊤(eiλ)

) [
f ζ⃗(λ) + f θ⃗(λ)

]−1
=

= A⊤(eiλ)−
(
A⊤(eiλ)f θ⃗(λ) + C⊤(eiλ)

)
×

×
[
f ζ⃗(λ) + f θ⃗(λ)

]−1
, (11)

where
C(eiλ) =

∑
n∈Γ

c⃗(n)einλ,

where Γ = S̃ ∪ {0, 1, 2, ...} and c⃗(n), n ∈ Γ, are
unknown vectors of coefficients.

Condition 1) is satisfied if the system of
equalities∫ π

−π
h⃗(f ζ⃗ , f θ⃗)e−imλdλ = 0,m ∈ Γ (12)

holds true.
The last equalities (12) provide the following

relations for all m ∈ Γ:
∞∑
j̃=0

a⃗⊤(j̃)
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ)+f θ⃗(λ))−1eiλ(j̃−m)dλ =

∑
n∈Γ

c⃗⊤(n)
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1eiλ(n−m)dλ.

(13)
Denote the Fourier coefficients of the matrix

functions (f ζ⃗(λ) + f θ⃗(λ))−1 and f ζ⃗(λ)(f ζ⃗(λ) +

f θ⃗(λ))−1 as

B(m− n) =
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1eiλ(n−m)dλ,

R(m−j̃) = 1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ)+f θ⃗(λ))−1eiλ(j̃−m)dλ,

n,m ∈ Γ, j̃ = 0, 1, 2....

Denote by a⃗⊤ = (⃗0⊤, ..., 0⃗⊤, a⃗⊤(0), a⃗⊤(1), ...) a
vector that has first

∑s
i=1Ki = K1 + ...+Ks zero

vectors 0⃗⊤ = (0, ..., 0︸ ︷︷ ︸
T

), next vectors a⃗(0), a⃗(1), ...

are constructed from coefficients of the functional
Aζ by formula (6).

Rewrite the relation (13) in the matrix form

Ra⃗ = Bc⃗,

where c⃗⊤ = (c⃗⊤(k))k∈Γ is a vector of the unknown
coefficients. The linear operator B is defined by
the matrix

B =


Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n

. . . . . . . . . . . .
B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n

 ,

constructed with the help of the block-matrices

Blm = {Blm(k, j)}−Ml
k=−Ml−1−Nl−1

−Mm
j=−Mm−1−Nm−1,

Blm(k, j) = B(k − j), l,m = 1, ..., s,

Bln(k, j) = {Bln(k, j)}−Ml
k=−Ml−1−Nl−1

∞
j=0,

Bln(k, j) = B(k − j), l = 1, ..., s,

Bnl(k, j) = {Bnl(k, j)}∞k=0
−Mm
j=−Mm−1−Nm−1,

Bnl(k, j) = B(k − j), m = 1, ..., s,

Bnn(k, j) = {Bnn(k, j)}∞k=0
∞
j=0,

Bnn(k, j) = B(k − j).

The linear operator R is defined by the
corresponding matrix, which is constructed in the
same manner as matrix B.

The unknown coefficients c⃗(k), k ∈ Γ are
determined from the equation

c⃗ = B−1Ra⃗, (14)

where the k-th component of the vector c⃗ is the
k-th component of vector B−1Ra⃗:

c⃗(k) = (B−1Ra⃗)(k), k ∈ Γ.

We will suppose that the operator B has the
inverse matrix.

The mean-square error of the optimal estimate

Âζ⃗ is calculated by the formula (9) and is of the
form

∆(⃗h, f ζ⃗ , f θ⃗) = E|Aζ⃗ − Âζ⃗|2 =
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=

∞∑
j̃=0

∞∑
k̃=0

a⃗⊤(j̃)
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ)+f θ⃗(λ))−1×

× f θ⃗(λ)e−iλ(j̃−k̃)dλ · a⃗(k̃)+

+
∑
n∈Γ

∑
k∈Γ

c⃗⊤(j̃)
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1×

× e−iλ(n−k)dλ · c⃗(k) =

= ⟨Da⃗, a⃗⟩+ ⟨Bc⃗, c⃗⟩, (15)

where ⟨a, b⟩ denotes the scalar product, D is
defined by the corresponding matrix, which is
constructed in the same manner as matrix B, with
elements

D(k̃ − j̃) =

1

2π

∫ π

−π

[
f ζ⃗(λ)(f ζ⃗(λ) + f θ⃗(λ))−1f θ⃗(λ)

]⊤
ei(j̃−k̃)λdλ,

k̃ ≥ 0, j̃ ≥ 0.

See [27] for more details.

Theorem 1. Let ζ(j) and θ(j) be uncorrelated T-
PC stochastic sequences with the spectral density
matrices f ζ⃗(λ) and f θ⃗(λ) of T-variate stationary
sequences ζ⃗(j̃) and θ⃗(j̃), respectively. Assume that
f ζ⃗(λ) and f θ⃗(λ) satisfy the minimality condition
( 7). Assume that condition ( 4) is satisfied and
operator B is invertible. The spectral characteri-
stic h⃗(f ζ⃗ , f θ⃗) and the mean square error ∆(f ζ⃗ , f θ⃗)
of the optimal linear estimate of the functional Aζ⃗
based on observations of the sequence ζ⃗(j̃) + θ⃗(j̃)
at points j̃ ∈ {...,−n, ...,−1} \ S̃, are calculated by
formulas ( 11) and ( 15).

Consider the mean-square estimation problem
of Aζ⃗ based on observations of the sequence ζ⃗(j̃)
at points j̃ ∈ {...,−n, ...,−1} \ S̃. In this case
the spectral density f θ⃗(λ) = 0. The spectral

characteristic h⃗(f ζ⃗) of the estimate Âζ⃗ is of the
form

h⃗⊤(f ζ⃗) = A⊤(eiλ)− C⊤(eiλ)
[
f ζ⃗(λ)

]−1
, (16)

where unknown coefficients c⃗(k), k ∈ Γ are
determined from the relation

Bc⃗ = a⃗ (17)

or
c⃗ = B−1a⃗,

where the linear operator B is defined by the
matrix

B =


Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n

. . . . . . . . . . . .
B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n

 ,

constructed with the help of the block-matrices

Blm = {Blm(k, j)}−Ml
k=−Ml−1−Nl−1

−Mm
j=−Mm−1−Nm−1,

Blm(k, j) = B(k − j), l,m = 1, ..., s,

Bln(k, j) = {Bln(k, j)}−Ml
k=−Ml−1−Nl−1

∞
j=0,

Bln(k, j) = B(k − j), l = 1, ..., s,

Bnl(k, j) = {Bnl(k, j)}∞k=0
−Mm
j=−Mm−1−Nm−1,

Bnl(k, j) = B(k − j), m = 1, ..., s,

Bnn(k, j) = {Bnn(k, j)}∞k=0
∞
j=0,

Bnn(k, j) = B(k − j),

with elements

B(k − j) =
1

2π

∫ π

−π

[
(f ζ⃗(λ))−1

]⊤
ei(j−k)λdλ,

k ∈ Γ, j ∈ Γ.

The mean square error ∆(f ζ⃗) is defined by the
formula

∆(f ζ⃗) = ⟨⃗c, a⃗⟩. (18)

Thus, in the case without noise we have the
following result.

Corollary 1. Let ζ(j) be a T-PC stochastic
sequence with the spectral density matrix f ζ⃗(λ) of
T-variate stationary sequence ζ⃗(j). Assume that
f ζ⃗(λ) satisfies the minimality condition∫ π

−π
Tr
[
(f ζ⃗(λ))−1

]
dλ < +∞. (19)

Assume that condition ( 4) is satisfied and operator
B is invertible. Then the optimal linear estimate
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of Aζ⃗ based on observations of ζ⃗(j̃) at points j̃ ∈
{...,−n, ...,−1} \ S̃, is given by the formula

Âζ⃗ =

∫ π

−π
h⃗⊤(f ζ⃗)Z ζ⃗(dλ) =

∫ π

−π

T∑
ν=1

hν(f
ζ⃗)Z ζ⃗

ν (dλ).

The spectral characteristic h⃗(f ζ⃗) and the mean

square error ∆(f ζ⃗) of Âζ⃗ are calculated by
formulas ( 16) and ( 18).

Let us consider the mean-square estimation
problem of functional

ANζ =
N ·T∑
j=1

a(j)ζ(j)

that depends on unknown values of T-PC
stochastic sequence ζ(j), based on observati-
ons of the sequence ζ(j) + θ(j) at points j ∈
{...,−n, ...,−1, 0} \ S. θ(j) is uncorrelated with
ζ(j) T-PC stochastic sequence.

Using Proposition 1.2, the linear functional
ANζ can be written as follows

ANζ =

N ·T∑
j=1

a(j)ζ(j) =

=

N−1∑
j̃=0

a(j̃)

T∑
ν=1

e2πij̃ν/T ζ(ν + j̃T ) =

=

N−1∑
j̃=0

T∑
ν=1

a(j̃)e2πij̃ν/T ζν(j) =

=

N−1∑
j̃=0

a⃗⊤(j̃)ζ⃗(j̃) = AN ζ⃗,

where a⃗⊤(j̃) is defined by relation (6), ζ⃗(j̃) ={
ζν(j̃)

}T

ν=1
is T -variate stationary sequence,

obtained by the T -blocking (3) of univariate T -PC
sequence ζ(j), j ≥ 1.

Let ζ⃗(j) and θ⃗(j) be uncorrelated T-variate
stationary stochastic sequences with the spectral

density matrices f ζ⃗(λ) =
{
f ζ⃗νµ(λ)

}T

ν,µ=1
and

f θ⃗(λ) =
{
f θ⃗νµ(λ)

}T

ν,µ=1
, respectively. Consider the

problem of optimal linear estimation of the functi-
onal

AN ζ⃗ =

N−1∑
j̃=0

a⃗⊤(j̃)ζ⃗(j̃), (20)

that depends on the unknown values of sequence
ζ⃗(j̃), based on observations of the sequence
ζ⃗(j̃) + θ⃗(j̃) at points j̃ ∈ {...,−n, ...,−1} \ S̃,
S̃ =

∪s
l=1{−Ml, . . . ,−Ml−1 − Nl − 1}, Ml =∑l

k=0(Nk +Kk), N0 = K0 = 0.
The estimate

ÂN ζ⃗ =

∫ π

−π
h⃗⊤N (eiλ)Z ζ⃗(dλ) (21)

of the functional AN ζ⃗ is defined by the spectral
characteristic h⃗N (eiλ) ∈ Ls

2(f
ζ⃗ + f θ⃗).

Denote by a⃗N
⊤ = (⃗0⊤, ..., 0⃗⊤, a⃗⊤(0), ..., a⃗⊤(N−

1), 0⃗⊤, 0⃗⊤, ...) a vector that has first
∑s

i=1Ki zero
vectors 0⃗⊤, next N vectors a⃗(0), ..., a⃗(N − 1) are
constructed from coefficients of the functional
ANζ by formula (6).

With the help of Hilbert space projection
method we can derive the following relations for
all m ∈ Γ:
N−1∑
j̃=0

a⃗⊤(j̃)
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ)+f θ⃗(λ))−1eiλ(j̃−m)dλ =

∑
n∈Γ

c⃗⊤(n)
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1eiλ(n−m)dλ.

(22)
Denote by RN the linear operator which is

defined as follows: RN (k, j) = R(k, j), j ≤ N − 1,
RN (k, j) = 0, j > N −1. Then we can rewrite the
relations (22) in the matrix form

RN a⃗N = Bc⃗.

The unknown vectors c⃗(k), k ∈ Γ, are
determined from the equation

c⃗ = B−1RN a⃗N .

The spectral characteristic of the optimal esti-

mate ÂN ζ⃗ is calculated by formula

h⃗⊤N (eiλ) =

=
(
A⊤

N (eiλ)f ζ⃗(λ)− C⊤(eiλ)
) [

f ζ⃗(λ) + f θ⃗(λ)
]−1

,

(23)

where

AN (eiλ) =

N−1∑
j̃=0

a⃗(j̃)eij̃λ.

The mean-square error of the optimal estimate

ÂN ζ⃗ is calculated by formula

∆(⃗hN , f
ζ⃗ , f θ⃗) = E|AN ζ⃗ − ÂN ζ⃗|2 =
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=

N−1∑
j̃=0

N−1∑
k̃=0

a⃗⊤(j̃)
1

2π

∫ π

−π
f ζ⃗(λ)(f ζ⃗(λ)+f θ⃗(λ))−1×

× f θ⃗(λ)e−iλ(j̃−k̃)dλ · a⃗(k̃)+

+
∑
n∈Γ

∑
k∈Γ

c⃗⊤(j̃)
1

2π

∫ π

−π
(f ζ⃗(λ) + f θ⃗(λ))−1×

× e−iλ(n−k)dλ · c⃗(k) =

= ⟨DN a⃗N , a⃗N ⟩+ ⟨Bc⃗, c⃗⟩, (24)

where linear operator D is defined as follows:
DN (k, j) = D(k, j), k, j ≤ N − 1, DN (k, j) = 0 if
k > N − 1 or j > N − 1.

Theorem 2. Let ζ(j) and θ(j) be uncorrelated T-
PC stochastic sequences with the spectral density
matrices f ζ⃗(λ) and f θ⃗(λ) of T-variate stationary
sequences ζ⃗(j̃) and θ⃗(j̃), respectively. Assume that
f ζ⃗(λ) and f θ⃗(λ) satisfy the minimality condi-
tion ( 7). Assume that operator B is inverti-
ble. The spectral characteristic h⃗N (eiλ) and the
mean square error ∆(⃗hN ; f ζ⃗ , f θ⃗) of the optimal
linear estimate of the functional AN ζ⃗ based on
observations of the sequence ζ⃗(j̃) + θ⃗(j̃) at points
j̃ ∈ {...,−n, ...,−1}\ S̃, are calculated by formulas
( 23) and ( 24).

In the case of observation without noise we
have the following result.

Corollary 2. Let ζ(j) be a T-PC stochastic
sequence with the spectral density matrix f ζ⃗(λ)
of T-variate stationary sequence ζ⃗(j). Assume
that f ζ⃗(λ) satisfies the minimality condition ( 19).
Assume that operator B is invertible. The spectral
characteristic h⃗N (eiλ) and the mean square error

∆(f ζ⃗) of ÂN ζ⃗ are calculated by formulas

h⃗⊤N (eiλ) = A⊤
N (eiλ)− C⊤(eiλ)

[
f ζ⃗(λ)

]−1
, (25)

∆(f ζ⃗) = ⟨⃗c, a⃗N ⟩. (26)

The linear operator B is defined in Corollary 1,
vector c⃗ is defined by the equation c⃗ = B−1a⃗N .

Example 1. Let ζ(n), n ∈ Z, be a 2-PC stochastic
sequence such that ζ(2n) = η(n) is a univariate
white noise with the spectral density f(λ) = 1
and ζ(2n + 1) = γ(n) is an uncorrelated wi-
th η(n) univariate stationary Ornstein-Uhlenbeck

sequence with the spectral density g(λ) = 1
|1−eiλ|2 .

Consider the problem of estimation of the functi-
onal

A1ζ = ζ(1) + ζ(2)

based on observations of ζ(n), n ∈ {...,−1, 0} \
{−3,−2} = {...,−5,−4,−1, 0}. Here S =
{−3,−2}, N1 = K1 = 1, M1 = 2.

Rewrite functional A1ζ in the form (20)

A1ζ = ζ(1) + ζ(2) =

= (1, 1) ·
(
ζ1(0)
ζ2(0)

)
= a⃗⊤(0)ζ⃗(0) = A1ζ⃗,

where a⃗(0) = (a(1 + 0 · 2)e2πi1·0/2, a(2 + 0 ·
2)e2πi2·0/2)⊤ = (1, 1)⊤, ζ⃗(0) = (ζ(1 + 0 · 2), ζ(2 +
0 · 2))⊤ = (ζ1(0), ζ2(0))

⊤, S̃ = {−2}. The spectral
density matrix of 2-variate stationary sequence
ζ⃗(n) is of the form

f ζ⃗(λ) =

(
f(λ) 0
0 g(λ)

)

The matrix [f ζ⃗(λ)]
−1

is of the form

[f ζ⃗(λ)]−1 =

=

(
1 0
0 2

)
+

(
0 0
0 −1

)
e−iλ +

(
0 0
0 −1

)
eiλ =

= B(0) +B(−1)e−iλ +B(1)eiλ

and satisfies the minimality condition (19). In the
last equality matrices

B(0) =

(
1 0
0 2

)
, B(−1) = B(1) =

(
0 0
0 −1

)
are the Fourier coefficients of the function
[f ζ⃗(λ)]

−1
. In order to find the spectral characteri-

stic h⃗1(eiλ) and the mean-square error ∆(f ζ⃗) of

the estimate Â1ζ⃗ let us use the Corollary 2. To
find the unknown coefficients

c⃗(k) = (B−1a⃗N )(k),

k ∈ Γ = S̃ ∪ {0, 1, ...} = {−2, 0, 1, ...}

we use the equation (17), where vectors
c⃗⊤ = (c⃗⊤(−2), c⃗⊤(0), c⃗⊤(1), ...), a⃗⊤1 =
(⃗0⊤, a⃗⊤(0), 0⃗⊤, ...). The operator B is defined by
matrix

B =

(
B11 B1n

Bn1 Bnn

)
,
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with block-matrices

B11 = {B11(k, j)}k=−2 j=−2 = B(0),

B1n = {B1n(k, j)}k=−2
∞
j=0 =

= (B(−2)B(−3)B(−4) ...) = (O2O2O2 ...),

Bn1 = {Bn1(k, j)}k=0 j=−2 =

= (B(2)B(3)B(4) ...)⊤ = (O2O2O2 ...)
⊤,

Bnn = {Bnn(k, j)}∞k=0
∞
j=0 =

=


B(0) B(−1) O2 ...
B(1) B(0) B(−1) ...
O2 B(1) B(0) ...
. . . ...

 ,

where O2 =

(
0 0
0 0

)
.

The inverse matrix B−1 can be represented in
the form

B−1 =

(
B−1

11 0
0 B−1

nn

)
,

where B−1
11 = (B(0))−1, B−1

nn is the inverse matrix
to Bnn. To find B−1

nn we use that matrix [f ζ⃗(λ)]−1

admits factorization

[f ζ⃗(λ)]−1 =
∞∑

j=−∞
B(j)eijλ =

=

( ∞∑
k=0

ψ(k)e−ikλ

)( ∞∑
k=0

ψ(k)e−ikλ

)∗

=

=

(( ∞∑
k=0

φ(k)e−ikλ

)∗( ∞∑
k=0

φ(k)e−ikλ

))−1

.

where ψ(0) =

(
1 0
0 1

)
, ψ(1) =

(
0 0
0 −1

)
,

ψ(k) = O2, k ≥ 2 and φ(0) =

(
1 0
0 1

)
, φ(k) =(

0 0
0 1

)
, k ≥ 1.

If we denote by Ψ and Φ linear operators
determined by matrices with elements Ψ(i, j) =
ψ(j − i), Φ(i, j) = φ(j − i), for 0 ≤ i ≤ j,
Ψ(i, j) = 0, Φ(i, j) = 0, for 0 ≤ j < i. Then
elements of the matrix Bnn can be represented in
the form Bnn(i, j) = (ΨΨ∗)(i, j). It is not hard to
verify that ΨΦ = ΦΨ = I. This makes possible

to write elements of B−1
nn in the form B−1

nn (i, j) =

(Φ∗Φ)(i, j) =
∑min(i,j)

l=0 (φ(i− l))∗φ(j − l).
Using equation c⃗ = B−1a⃗N we can represent

the unknown coefficients c⃗(k), k ∈ Γ in the form

c⃗(−2) = 0⃗,

c⃗(0) = B−1
nn (0, 0)⃗a(0),

c⃗(1) = B−1
nn (1, 0)⃗a(0),

...

c⃗(i) = B−1
nn (i, 0)⃗a(0), i ≥ 2.

The spectral characteristic h⃗1(eiλ) is determi-
ned by the formula (25)

h⃗⊤1 (e
iλ) = −c⃗⊤(0)B(−1)e−iλ =

= −B−1
nn (0, 0)⃗a(0)B(−1)e−iλ.

Since B−1
nn = φ∗(0)φ(0) =

(
1 0
0 1

)
, the spectral

characteristic is of the form

h⃗⊤1 (e
iλ) = −(0,−1)e−iλ.

The optimal linear estimate Â1ζ⃗ can be
calculated by the formula (21)

Â1ζ⃗ = ζ2(−1) = ζ(0).

The mean-square error of the estimate Â1ζ⃗
determined by (26) equals

∆(f ζ⃗) = ⟨⃗c⊤, a⃗1⟩ = 2.

3 Minimax (robust) method of linear
extrapolation problem

Let f(λ) and g(λ) be the spectral density matrices
of T -variate stationary sequences ζ⃗(j) and θ⃗(j),
obtained by T -blocking (3) of T -PC sequences ζ(j)
and θ(j), respectively.

The obtained formulas may be applied for fi-
nding the spectral characteristic and the mean
square error of the optimal linear estimate of the
functionals Aζ⃗ and AN ζ⃗ only under the conditi-
on that the spectral density matrices f(λ) and
g(λ) are exactly known. If the density matrices
are not known exactly while a set D = Df × Dg

of possible spectral densities is given, the mini-
max (robust) approach to estimation of functi-
onals from unknown values of stationary sequences
is reasonable. In this case we find the estimate whi-
ch minimizes the mean square error for all spectral
densities from the given set simultaneously.

47



Вiсник Київського нацiонального унiверситету
iменi Тараса Шевченка
Серiя: фiзико-математичнi науки

2021, 2
Bulletin of Taras Shevchenko
National University of Kyiv

Series: Physics & Mathematics

Definition 3. For a given class of pairs of spectral
densities D = Df ×Dg the spectral density matri-
ces f0(λ) ∈ Df , g0(λ) ∈ Dg are called the least
favorable in D for the optimal linear estimation of
the functional Aζ⃗ if

∆(f0, g0) = ∆(⃗h(f0, g0); f0, g0) =

= max
(f,g)∈D

∆(⃗h(f, g); f, g).

Definition 4. For a given class of pairs of spectral
densities D = Df ×Dg the spectral characteristic
h⃗0(λ) of the optimal linear estimate of the functi-
onal Aζ⃗ is called minimax (robust) if

h⃗0(λ) ∈ HD =
∩

(f,g)∈D

Ls
2(f + g),

min
h⃗∈HD

max
(f,g)∈D

∆(⃗h; f, g) = max
(f,g)∈D

∆(⃗h0; f, g).

Taking into consideration these definitions
and the obtained relations we can verify that the
following lemmas hold true.

Lemma 1. The spectral density matrices f0(λ) ∈
Df , g0(λ) ∈ Dg, that satisfy the minimality condi-
tion ( 7), are the least favorable in the class D for
the optimal linear estimation of Aζ⃗, if the Fourier
coefficients of the matrix functions

(f0(λ) + g0(λ))−1, f0(λ)(f0(λ) + g0(λ))−1,

f0(λ)(f0(λ) + g0(λ))−1g0(λ)

define matrices B0,R0,D0, that determine a
solution of the constrained optimization problem

max
(f,g)∈D

(⟨Ra⃗,B−1Ra⃗⟩) + ⟨Da⃗, a⃗⟩) =

= ⟨R0a⃗, (B0)−1R0a⃗⟩) + ⟨D0a⃗, a⃗⟩.

The minimax spectral characteristic h⃗0 = h⃗(f0, g0)
is given by ( 11), if h⃗(f0, g0) ∈ HD.

In the case of observations of the sequence wi-
thout noise the following corollary holds true.

Corollary 3. The spectral density matrix f0(λ) ∈
Df , that satisfies the minimality condition ( 19), is
the least favorable in the class Df for the optimal
linear estimation of Aζ⃗ based on observations of
ζ⃗(j̃) at points j̃ ∈ {...,−n, ...,−1}\ S̃, if the Fouri-
er coefficients of the matrix function (f0(λ))−1

define the matrix B0, that determine a solution
of the constrained optimization problem

max
f∈Df

⟨B−1a⃗, a⃗⟩ = ⟨(B0)−1a⃗, a⃗⟩.

The minimax spectral characteristic h⃗0 = h⃗(f0) is
given by ( 16), if h⃗(f0) ∈ HD.

The least favorable spectral densities f0(λ) ∈
Df , g0(λ) ∈ Dg and the minimax spectral
characteristic h⃗0 = h⃗(f0, g0) form a saddle poi-
nt of the function ∆(⃗h; f, g) on the set HD × D.
The saddle point inequalities

∆(⃗h0; f, g) ≤ ∆(⃗h0; f0, g0) ≤ ∆(⃗h; f0, g0),

∀h⃗ ∈ HD, ∀f ∈ Df , ∀g ∈ Dg

hold true when h⃗0 = h⃗(f0, g0), h⃗(f0, g0) ∈ HD

and (f0, g0) is a solution of the constrained opti-
mization problem

∆
(
h⃗(f0, g0); f, g

)
→ sup,

(f, g) ∈ Df ×Dg. (27)

The linear functional ∆(⃗h(f0, g0); f, g) is
calculated by the formula

∆(⃗h(f0, g0); f, g) =
1

2π

∫ π

−π

(
A⊤(eiλ)g0(λ) + (C0(eiλ))⊤

)
(f0(λ) + g0(λ))−1f(λ)(f0(λ) + g0(λ))−1×

×
(
A⊤(eiλ)g0(λ) + (C0(eiλ))⊤

)∗
dλ+

1

2π

∫ π

−π

(
A⊤(eiλ)f0(λ)− (C0(eiλ))⊤

)
(f0(λ) + g0(λ))−1×

× g(λ)(f0(λ) + g0(λ))−1
(
A⊤(eiλ)f0(λ)− (C0(eiλ))⊤

)∗
dλ,

where C0(eiλ) =
∑

n∈Γ c⃗
0(n)einλ, column vectors

c⃗ 0(n) = ((B0)−1R0a⃗)(n).

The constrained optimization problem (27)
is equivalent to the unconstrained optimization

problem [?]:

∆D(f, g) = −∆(⃗h(f0, g0); f, g)+

+ δ((f, g) |Df ×Dg ) → inf, (28)
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where δ((f, g)|Df × Dg) is the indicator functi-
on of the set D = Df × Dg. A solution of the
problem (28) is characterized by the condition
0 ∈ ∂∆D(f

0, g0), where ∂∆D(f
0, g0) is the subdi-

fferential of the convex functional ∆D(f, g) at poi-
nt (f0, g0) [33].

The form of the functional ∆(⃗h(f0, g0); f, g)
admits finding the derivatives and differentials of
the functional in the space L1 × L1. Therefore
the complexity of the optimization problem (28)
is determined by the complexity of calculati-
ng of subdifferentials of the indicator functions
δ((f, g)|Df ×Dg) of the sets Df ×Dg [13].

Taking into consideration the introduced defi-
nitions and the derived relations we can verify that
the following lemma holds true.

Lemma 2. Let (f0, g0) be a solution to the optimi-
zation problem ( 28). The spectral densities f0(λ),
g0(λ) are the least favorable in the class D = Df×
Dg and the spectral characteristic h⃗0 = h⃗(f0, g0)
is the minimax of the optimal linear estimate of
the functional Aζ⃗ if h⃗(f0, g0) ∈ HD.

In the case of estimation of the functional
based on observations without noise we have the
following statement.

Lemma 3. Let f0(λ) satisfies the condition ( 19)
and be a solution of the constrained optimization
problem

∆(⃗h(f0); f) → sup, f(λ) ∈ Df , (29)

∆(⃗h(f0); f) =
1

2π

∫ π

−π

(
C0(eiλ)

)⊤
×

× (f0(λ))−1f(λ)(f0(λ))−1(C0(eiλ))dλ,

where C0(eiλ) =
∑

n∈Γ c⃗
0(n)einλ, column vectors

c⃗ 0(n) = ((B0)−1a⃗)(n).
Then f0(λ) is the least favorable spectral

density matrix for the optimal linear estimation
of Aζ⃗ based on observations of ζ⃗(j̃) at points
j̃ ∈ {...,−n, ...,−1} \ S̃. The minimax spectral
characteristic h⃗0 = h⃗(f0) is given by ( 16), if
h⃗(f0) ∈ HD.

4 The least favorable spectral densities in
the class D = D0 ×DU

V

Let f(λ) and g(λ) be the spectral density matrices
of T -variate stationary sequences ζ⃗(j) and θ⃗(j),

obtained by T -blocking (3) of T -PC sequences ζ(j)
and θ(j), respectively.

Consider the problem of minimax estimation
of the functional Aζ⃗ based on observations of the
sequence ζ⃗(j̃)+θ⃗(j̃) at points j̃ ∈ {...,−n, ...,−1}\
S̃, under the condition that the spectral densi-
ty matrices f(λ) and g(λ) belong to the class
D = D0 ×DU

V , where

D1
0 =

{
f(λ)| 1

2π

∫ π

−π
f(λ)dλ = P

}
,

DU1
V =

{
g(λ)|V (λ) ≤ g(λ) ≤ U(λ),

1

2π

∫ π

−π
g(λ)dλ = Q

}
,

D2
0 =

{
f(λ)| 1

2π

∫ π

−π
Tr f(λ)dλ = p

}
,

DU2
V =

{
g(λ)|Tr V (λ) ≤ Tr g(λ) ≤ Tr U(λ),

1

2π

∫ π

−π
Tr g(λ)dλ = q

}
,

where P,Q are known positive definite Hermitian
matrices, spectral densities V (λ), U(λ) are known
and fixed, p, q are known and fixed numbers.

With the help of the method of Lagrange
multipliers we can find that solution (f0(λ), g0(λ))
of the constrained optimization problem (27) sati-
sfy the following relations for these sets of admi-
ssible spectral densities.

For the pair D1
0 ×DU1

V we have relations

(g0(λ)A(eiλ)+C0(eiλ))((g0(λ))⊤A(eiλ)+C0(eiλ))⊤

= (f0(λ) + g0(λ))α⃗α⃗⊤(f0(λ) + g0(λ)), (30)

(f0(λ)A(eiλ)−C0(eiλ))((f0(λ))⊤A(eiλ)−C0(eiλ))⊤

= (f0(λ)+g0(λ))(β⃗β⃗⊤+ψ1(λ)+ψ2(λ))(f
0(λ)+g0(λ)),

(31)

where α⃗, β⃗ are Lagrange multipliers, ψ1(λ) ≤ 0
and ψ1(λ) = 0 if g0(λ) ≥ V (λ), ψ2(λ) ≥ 0 and
ψ2(λ) = 0 if g0(λ) ≤ U(λ).

For the pair D2
0 ×DU2

V we have relations

(g0(λ)A(eiλ)+C0(eiλ))((g0(λ))⊤A(eiλ)+C0(eiλ))⊤

= α2(f0(λ) + g0(λ))2, (32)
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(f0(λ)A(eiλ)−C0(eiλ))((f0(λ))⊤A(eiλ)−C0(eiλ))⊤

= (β2 + φ1(λ) + φ2(λ))(f
0(λ) + g0(λ))2, (33)

where α2, β2 are Lagrange multipliers, φ1(λ) ≤ 0
and φ1(λ) = 0 if Tr g0(λ) ≥ Tr V (λ), φ2(λ) ≥ 0
and φ2(λ) = 0 if Tr g0(λ) ≤ Tr U(λ).

Hence the following theorem holds true.

Theorem 3. Let the spectral densities f0(λ) and
g0(λ) satisfy the minimality condition ( 7). The
least favorable spectral densities f0(λ), g0(λ) in the
class D1

0 ×DU1
V for the optimal linear extrapolati-

on of the functional Aζ⃗ are determined by relati-
ons ( 30), ( 31). The least favorable spectral densi-
ties f0(λ), g0(λ) in the class D2

0 × DU2
V for the

optimal linear extrapolation of the functional Aζ⃗
are determined by relations ( 32), ( 33). The mini-
max spectral characteristic of the optimal estimate
of the functional Aζ⃗ is determined by the formula
( 11).

In the case of observations of the sequence wi-
thout noise the following corollaries hold true.

Corollary 4. Let the spectral density f0(λ) sati-
sfies the minimality condition ( 19). The least
favorable spectral density f0(λ) in the class D1

0

or D2
0 for the optimal linear extrapolation of the

functional Aζ⃗ based on observations of ζ⃗(j̃) at poi-
nts j̃ ∈ {...,−n, ...,−1}\ S̃ is determined by relati-
ons, respectively

(C0(eiλ))(C0(eiλ))⊤ = f0(λ)α⃗α⃗⊤f0(λ), (34)

(C0(eiλ))(C0(eiλ))⊤ = α2(f0(λ))2, (35)

by the constrained optimization problem ( 29) and
restrictions on the density from the corresponding
class D1

0 or D2
0. The minimax spectral characteri-

stic of the optimal estimate of the functional Aζ⃗ is
determined by the formula ( 16).

Corollary 5. Let the spectral density f0(λ) sati-
sfies the minimality condition ( 19). The least
favorable spectral density f0(λ) in the class DU1

V

or DU2
V for the optimal linear extrapolation of the

functional Aζ⃗ based on observations of ζ⃗(j̃) at poi-
nts j̃ ∈ {...,−n, ...,−1}\ S̃ is determined by relati-
ons, respectively

(C0(eiλ))(C0(eiλ))⊤ =

= f0(λ)(β⃗β⃗⊤ + ψ1(λ) + ψ2(λ))f
0(λ), (36)

(C0(eiλ))(C0(eiλ))⊤ =

= (β2 + φ1(λ) + φ2(λ))(f
0(λ))2, (37)

by the constrained optimization problem ( 29) and
restrictions on the density from the correspondi-
ng class DU1

V or DU2
V . The minimax spectral

characteristic of the optimal estimate of the functi-
onal Aζ⃗ is determined by the formula ( 16).

5 Conclusions

In this article we study the extrapolation of the
functionals Aζ and ANζ which depend on the
unobserved values of a periodically correlated
stochastic sequence ζ(j). Estimates are based on
observations of a periodically correlated stochastic
sequence ζ(j) + θ(j) with missing observati-
ons, that means that observations of ζ(j) +
θ(j) are known at points j ∈ Z \ S, j ∈
{...,−n, ...,−2,−1, 0} \ S, S =

∪s−1
l=1 {−Ml · T +

1, . . . ,−Ml−1 ·T −Nl ·T}. The sequence θ(j) is an
uncorrelated with ζ(j) additive noise.

The extrapolation problem is considered
under the condition of spectral certainty and
under the condition of spectral uncertainty. In
the first case of spectral certainty the spectral
density matrices f(λ) and g(λ) of the T -variate
stationary sequences ζ⃗(n) and θ⃗(n), obtained by
T -blocking of T -PC sequences ζ(j) and θ(j),
respectively, are suppose to be known exactly. Wi-
th the help of Hilbert space projection method
formulas for calculating the spectral characteri-
stic and the mean-square error of the optimal
estimate of the functionals are proposed. In the
second case of spectral uncertainty the spectral
density matrices are not exactly known while a
class D = Df ×Dg of admissible spectral densiti-
es is given. Using the minimax (robust) estimati-
on method we derived relations that determine
the least favorable spectral densities and the mi-
nimax spectral characteristic of the optimal esti-
mate of the functional Aζ. The problem is investi-
gated in details for two special classes of admissi-
ble spectral densities. In each of cases of spectral
certainty and uncertainty the case of observations
of the sequence without noise θ(j) are presented.
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