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Hocaidoicyemnsea 3a0ama onMuUMaisHo20 0UIHIOGANHA MHITHUT dynxuionanie AC = Zj’;l a(5)C(j),
610 HeGIdOMUT 3HAEND NEPIOUYHO KOPEAbo8arol cmoxacmuyunol nocaidosnocmi ((J) na ocnosi cno-
cmepeaicens nocaidosnocmi C(j) + 0(j) 6 mowrax j € {...,—n,...,—2,-1,0}\ S, S = U {—M; -
T+1,....,—M;_1-T—N;-T}, de 0(j) - nexopeavosara 3 ((j) nepiodusno xopeavbos8ana Cmoracmu-
YHa NOcALdosHicmb. OMpPumaro Gopmysl Oaf 00MUCAEHHA ZHAUEHD CEPEIHBOKBAIPAMUYNHUL NOTUOOK
ma CNEKMPANLHUT TAPAKMEPUCTIUK ONMUMAALHUL 0Uinok dynruyionary AC drsa nocaidosnocmetds 3
BI0OMUMY CNEKMPANOHUMY WIADHOCTNAMY. DOPMYAU, WO BUHANAIOMb HAUMEHW CPUAMAUGBT CNe-
KMPAALHE WIADHOCTE A MIHIMAKCHO-DOOGCMHT CEKMPAAOHT TAPAKMEPUCTIUKY ONMUMAAOHUL NHIT-
HUT OUTHOK PYHKUIOHAAIE NPONOHYIOMDBCA Y BUNAOKY, KOAU CNEKMPAAbHE WEALHOCTNT NOCAII08HOCTEN
MOYHO HEGIOOMI, 4 6KA3GHT MHONCUHY JONYCMUMUL CNEKMPANOHUL ULALHOCTE.

Pesyavmamu docaidorcerns donosidasucy wa Miokcnapodniti nayxosit kongepenyii “Modern Stochasti-
cs: Theory and Applications. V" (MSTA-V).

Kamowosi caosa: Tlepiodudno Kopeasvosana cmoracmudma NocAido8HICMb, MIHIMAKCHO-POOACTHA
OUIHKA, HAGUMEHW CNPUATNAUBG CNEKMPAAbHA WIADHICTD, MIHIMAKCHO-DOBACTHG CREKMPAALHA TAPa-
KMePUCmuKa.

The problem of optimal estimation of the linear functionals A( = Z;i1 a(7)C(j), which depend
on the unknown values of a periodically correlated stochastic sequence ((j) from observations of the
sequence ((j) + 0(j) at points j € {...,—n,...,—2,—-1,0} \ S, S = Uf;ll{—Ml T4+1,...,—M; 1-T—
N;-T}, is considered, where 0(j) is an uncorrelated with ((j) periodically correlated stochastic sequence.
Formulas for calculation the mean square error and the spectral characteristic of the optimal estimate
of the functional AC are proposed in the case where spectral densities of the sequences are exactly
known. Formulas that determine the least favorable spectral densities and the minimax-robust spectral
characteristics of the optimal estimates of functionals are proposed in the case of spectral uncertainty,
where the spectral densities are not exactly known while some sets of admissible spectral densities are
specified.
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Introduction

W.R. Bennett [1] in 1958 started to explore
cyclostationarity as a phenomenon and property
of the process, which describes signals in
channels of communication. Studying the stati-
stical characteristics of information transmissi-
on, he calls the group of telegraph signals the
cyclostationary process, that is the process whose
group of statistics changes periodically with ti-
me. W.A. Gardner [5], [6] highlights the greatest
similarity of cyclostationary processes, which are
a subclass of nonstationary processes, with stati-
onary processes. He presented the bibliography
of works |7] in which properties and applications
of cyclostationary processes were investigated ti-
11 1992. Recent developments and applications of
cyclostationary signal analysis are reviewed in the
papers by A. Napolitano [30], [31]. Note, that in
other sources cyclostationary processes are called
periodically stationary, periodically nonstationary,
periodically correlated. We will use the term peri-
odically correlated processes. E.G. Gladyshev [8]
in 1961 was the first who started the analysis of
spectral properties and representation of periodi-
cally correlated sequences based on its connection
with vector stationary sequences. He formulated
the necessary and sufficient conditions for determi-
ning of periodically correlated sequence in terms
of the correlation function. A. Makagon with
coauthrs [17], [18] presented detailed spectral
analysis of periodically correlated sequences. Main
ideas of the research of periodically correlated
sequences are outlined in the book by H.L. Hurd
and A. Miamee [12].

The linear extrapolation and interpolation
problems for stationary stochastic processes under
the condition that spectral densities are known
exactly were first introduced by A. N. Kolmogorov
[15]. Solutions of the extrapolation and filtering
problems for stationary processes and sequences
with rational spectral densities were proposed by
N. Wiener [36] and A. M. Yaglom [37]. Esti-
mation problems for vector stationary sequences
were investigated by E. J. Hannan [11] and
Yu. A. Rozanov [34]. Since stochastic processes
often accompanied with undesirable noise it is
naturally to assume that the exact value of
spectral density is unknown and the model of
process is given by a set of restrictions on spectral
density. K.S. Vastola and H.V. Poor [35] have
demonstrated that the described procedure can
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result in significant increasing of the value of error.
This is a reason for searching estimates which are
optimal for all densities from a certain class of
admissible spectral densities. These estimates are
called minimax since they minimize the maximal
value of the error of estimates. A survey of results
in minimax (robust) methods of data processing
can be found in the paper by Kassam and Poor
[14].

Ulf Grenander [10]| was the first who proposed
the minimax approach to the extrapolation
problem for stationary processes. Formulation and
investigation of the problems of extrapolation,
interpolation and filtering of linear functionals
which depend on the unknown values of stati-
onary sequences and processes from observati-
ons with and without noise are presented by
M.P. Moklyachuk [22], [23]. Results of investigati-
on of the problems of optimal estimation of vector-
valued stationary sequences and processes are
published by M.P. Moklyachuk, O.Yu. Masyutka
[25], [26], [27]. In their book M.M Luz and M.P.
Moklyachuk [16] presented results of investigati-
on of the minimax estimation problems for linear
functionals which depends on unknown values of
stochastic sequence with stationary increments.
LI. Golichenko and M.P. Moklyachuk [2], [3], [4],
[24] investigated the interpolation, extrapolation
and filtering problems of linear functionals from
periodically correlated stochastic sequences and
processes. The interpolation and filtering problems
for stationary sequences with missing values was
examined by M.P. Moklyachuk, O.Yu. Masyutka
and M.L.Sidei [19], [21], [28], [29]. The interpolati-
on problem of linear functionals from periodi-
cally correlated stochastic sequences with missing
observations was investigated by I.I. Golichenko
and M.P. Moklyachuk in [9].

In this paper we presented results of investi-
gation of the problem of optimal linear estimati-
on of the functional A( = Z;’il a(7)¢(7), whi-
ch depends on the unknown values of a peri-
odically correlated stochastic sequence ((j) from
observations of the sequence ((j) + 6(j) at points
jef ., —n,...,=2,-1,0}\ S, S = Ui {—M; -
T+1,...,—M;_y - T — N; - T}, where 6(j) is
an uncorrelated with ((j) periodically correlated
stochastic sequence. Formulas for calculation of
the mean square error and the spectral characteri-
stic of the optimal estimate of the functional A(
are proposed in the case where spectral densities
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are exactly known. Formulas that determine the
least favorable spectral densities and the minimax-
robust spectral characteristics of the optimal esti-
mates of functionals are proposed in the case of
spectral uncertainty, where the spectral densities
are not exactly known while some sets of admissi-
ble spectral densities are specified.

1 Periodically correlated and multidi-
mensional stationary sequences

The term periodically correlated process was
introduced by E. G. Gladyshev [8] while
W. R. Bennett [1] called random and periodic
processes cyclostationary process.
Periodically  correlated  sequences
stochastic sequences that have periodic structure
(see the book by H. L. Hurd and A. Miamee [12]).

are

Definition 1. A complex walued stochastic
sequence ((n),n € Z with zero mean, E((n) = 0,
and finite variance, E|C(n)]?> < +oo, is called
cyclostationary or periodically correlated (PC) wi-

th period T (T-PC) if for every n,m € Z

EC(n+T)C(m +T) = R(n+T,m+T) = R(n,m)
(1)
and there are no smaller values of T > 0 for which

(1) holds true.

Definition 2. A complex walued T-variate
stochastic sequence &(n) = {&,(n)}._,,n € Z
with zero mean, E,(n) = 0,v 1,...,T, and
E||E(n)||? < oo is called stationary if for all n,m €

Z andv,p € {1,...,T}

ESy(n)€u(m) = Ryp(n,m) = Ryu(n —m).

the case, we denote R(n)
and call it the covariance matriz of

18 =
T
vp=1

If  this
{Rw(n)} o

T-variate stochastic sequence £(n).

Proposition 1.1. (E. G. Gladyshev [§]). A
stochastic sequence ((n) is PC with period T if
and only if there exists a T-variate stationary
sequence £(n) = {fl,(n)}le such that ¢(n) has
the representation

T

C(n) =>_e¥™™IT¢,(n), n €L

v=1

(2)

—

The sequence £(n) is called generating sequence of
the sequence ((n).
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Proposition 1.2. (E. G. Gladyshev [8]). A
complez valued stochastic sequence ((n),n € Z wi-
th zero mean and finite variance is PC with period

T if and only if the T-variate blocked sequence ((n)
of the form

(), =C¢nT +p), n€Zp=1,...,T

15 stationary.

(3)

B " T
We will denote by fC()‘) = {fg“()‘)}wzl

the matrix valued spectral density function
of the T-variate stationary sequence ((n)
(¢i(n),...,¢r(n))" arising from the T-blocking

(3) of a univariate T-PC sequence ((n).

2 The classical projection method of linear
extrapolation

Let ¢(j) and 6(j) be uncorrelated T-PC stochastic
sequences. Consider the problem of optimal linear
estimation of the functional

AC = a(i) (),
j=1

that depends on the unknown values of T-PC
stochastic sequence ((j), based on observati-
ons of the sequence ((j) + 6(j) at points j €
{iy—m,....,—1,0} \ S, S U {—M - T +
l,...,~M;_y - T — Ny - T}, My = Sh_o(Ny, +
Ky), No=Ky=0,.

Let assume that the coefficients a(j),j > 1
which determine the functional A( satisfy condi-

tion
[oe)
> la(i)| < o0
j=1

and are of the form
0= ((0-[7]7) + ] 7) -
= a(v +JT) = a(j)e™"/", (5)
v=1,...,T,7>0,

where v =T and j=A—1,if j=T -\, A€ Z, or
a(j) = a(T-N) = a(T+A=1)T) = a(A—1)2™A-DT/T
Under the condition (4) the functional A has the
finite second moment.

Using Proposition 1.2, the linear functional
A( can be written as follows

(4)

J J

T >3 ~
Z eZﬂijV/TC(V+jT) —

v=1

AC = ali)c) = al))
j=1 7=0
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o T [e%s)
=33 a()e”™ () =D a" ()¢G) = AL
j=ov=1 =0
where
() = (a1G): - var()
a(G) = a(eX /T v =1,....T, (6)

G = {aG))_ s
sequence, obtained by the T-blocking (3) of uni-
variate T-PC sequence ((j), j > 1.

Let C(j) and 6(j) be uncorrelated T-variate
stationary stochastic sequences with thjg spectral
{fun}  and

)

T-variate stationary

density matrices fg()\)

o ={mo},

problem of optimal linear estimation of the functi-
onal
0 o~
A= a (5)S0)
=0

that depends on the unknown values of sequence
5 (5), based on observations of the sequence
C:(}) + 6(j) at points j € {.. =11\ S,
= U {—M,...,— M, — Nl - 1}, M, =
>heo(Nk + Kr), No =Ko =0, )
Let the spectral densities f¢()\) and f7()\)
satisfy the minimality condition

respectively. Consider the

™

/

Condition (7) is necessary and sufficient in order
that the error-free extrapolation of unknown
values of the sequence ((j) + 6(j) is impossible
[34].

Denote by Ly(f) the Hilbert space of vector
valued functions b(\) = {b,(A )}V , that are
integrable with respect to a measure with the

density f(\) = {fuu( )}V,L 1

/

e[S + 7)) ar < 400 (7)

™

Fwnﬁﬁwz

™

) Fup(N)bu(N)dA < +o0.

Denote by L5(f) the subspace in La(f)
generated by functions
v=1,...,T,

7_1}\§7

€26,,0, = {Suu 0,

jef{...,—
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where d,,, is the Kronecker delta: 4,, = 1,6,, =0
for v # p.

Every linear estimate Ag of the functional Af
from observations of the sequence ((j) + 6(j) at
points j € {..., ..,—1}\ S has the form

E—”ﬁww%wwﬁw»=

/ Zh A (Z5(dN) + Z0(dN), (8)

- {Z§(A)}T and Z0(A) =

where Zf(A) B

{Zﬁ(A)}T
v=1 o L ~
of the sequences ((j) and 6(j), and h(e
{hv(eM)};1
estimate AC. The function h(e™) € L;(fg—i- f(;).
T}E mean square error A(i—i; ff, fg) of the esti-

are orthogonal random measures

z‘>\) —

is the spectral characteristic of the

mate A5 is calculated by the formula

—

A £, %) = BIAC - AP =
% _W [A(BM) B i_i(ei)‘)} Tff()\) [A(ei)‘) _ H(e“‘)}
(9)
+% BT (eX) PO R(eN)dA,

The spectral characteristic l_i( ff, fg) of the opti-
mal linear estimate of A( minimizes the mean
square error

- — — — - —

AP 17 = AR, 1) 14 1) =
= min _ A®fC %) = min E]A - AC.
heLs(fS+£9) Al

(10)

With the help of the Hilbert space projection
method proposed by A. N. Kolmogorov [15] we
can find a solution of the optimization problem

(10). The optimal linear estimate AC is a projecti-
on of the functional A§ on the subspace HNS[Q? +
0] = H°[Cu(5) +0,(4), j € {..., —m, ... _1}\5 V=
1,...,T] of the Hilbert space H = {¢ :
0, E[¢|> < oo}, generated by values C,,( ) -

d\+
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0,(7),7 € {-y—n, ..., —1}\§, v =1,...,T. The
projection is characterized by following conditions

1) ACe H*[( + 4],

2) AC— AC L H*[C+ 4.

The condition 2) gives us the possibility to
derive the formula for spectral characteristic of the
estimate

where
C(e?) = Z é(n)e'™,
nel’
where I' = SU{0,1,2,...} and &n),n € I, are
unknown vectors of coefficients.
Condition 1) is satisfied if the system of
equalities

holds true.

The last equalities (12) provide the following
relations for all m € I':

R(fS, e ™A =0,meT  (12)

NN I AT ay

—T

7=0
ST i T ¢ G —1 _iA(n—m)
S gy [ G+ o e

(13)

Denote the Fourier coefficients of the matrix

functions (fS(\) + f9(N)~' and fSN)(FS(N) +
) as

Blm—n) = 5 [ (500 + F0) e man,
Rm=3) = o= [ FEOVGEQ ) e,
nmel,j=0,1,2

Denotebya' = (0',...,07,a"(0),a' (1),...)a
vector that has first Y7 | K; = K1 + ... + K zero

vectors 0 = (0, ...,0), next vectors @(0),a(1),...
——

T
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are constructed from coeflicients of the functional
A( by formula (6).
Rewrite the relation (13) in the matrix form
Ra = Bc,
where ¢ = (€7 (k))ger is a vector of the unknown

coefficients. The linear operator B is defined by
the matrix

Bs,s Bs,sfl Bs,l Bs,n
Bs—l,s Bs—l,s—l Bs—l,l Bs—l,n
B=| ... . . ,
By s Bis1 By Bin
Bn,s Bn,sfl Bn,l Bn,n

constructed with the help of the block-matrices

=M, -M
Bim = {Blm(kaj)}k:lMlillefl j:_n]l\/[mfl_]vm_p

Blm(kM]) = B(k _j)a lvm = 17"'787
Bia(k, §) = {Bun (k. )5 20wy 500
Bln(kh]) = B(k _j)v l= 17"'787

Bnl(kvj) = {Bnl(ka])}zozo ji::?\/[m_lmefp
Bnl(k’]) = B(k _j)7 m=1,..s,

Bnn(k’j) = {Bnn(ku?)}zozo (J?io’

The linear operator R is defined by the
corresponding matrix, which is constructed in the
same manner as matrix B.

The unknown coefficients ¢(k),k € T are
determined from the equation

¢=B'R3, (14)
where the k-th component of the vector € is the

k-th component of vector B"'Ra:
¢(k) = (B™'Ra)(k), k € T.

We will suppose that the operator B has the
inverse matrix.

The mean-square error of the optimal estimate
AC is calculated by the formula (9) and is of the
form

AR, €, 17) = B|A - AC? =
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7T -

FEFEON+F7 ()

 FIN)e" TR ax . G(k)+

FX ST Oy [ G0+ )
nel’ kel’

x ek gx . d(k) =

= (Da, d) + (Bc, ), (15)

where (a,b) denotes the scalar product, D is
defined by the corresponding matrix, which is
constructed in the same manner as matrix B, with
elements

D(k —j) =
L”[fa 3 j i eiG-F

27 J_,

See |27] for more details.

Theorem 1. Let ((j) and 0(j) be uncorrelated T-
PC stochastic sequences with the spectral density
matrices fC( ) and f‘g( ) of T-variate stationary
sequences 5(3) and 9( ), respectively. Assume that
fE(N) and fO(N\) satisfy the minimality condition
(7). Assume that condition (4) is satisfied and
operator B is invertible. The spectral characteri-
stic ﬁ(fc, f%) and the mean square error A(f<, f%)
of the optimal linear estimate of the functwnal Af
based on observations of the sequence CG) +00)
at points j € {..., 1}\S are calculated by
formulas (11) cmd (15).

Consider the mean-square estimation problem
of Af based on observations of the sequence f (5)
at points j € T A S. In this case
the spectral density f7(\) = 0. T/h\e spectral

characteristic h( fg) of the estimate AC is of the
form

o . : - -1

RT(F) = AT =T [F )], ae)

where unknown coefficients é(k), k € I' are
determined from the relation

Bc =4 (17)

44
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¢ =B34,

where the linear operator B is defined by the
matrix

Bs,s Bs,sfl Bs,l Bs,n
Bs—l,s Bs—l,s—l Bs—l,l Bs—l,n
B = . . . . ,
By s Bis1 Bi1 By,
Bn,s Bn s—1 Bn,l Bn,n

)

constructed with the help of the block-matrices

7M’rn
By, = {Bim(k, j) };. kf ‘M Ny—1 J=—Mpp_1—Nm—11
By (k,j) =B(k—j7),l,m=1,..,s,
Bln(k ])_{Bln( ) kylMl 1-Nj— ]_.7 =0>
Bun(k,j) = Bk —§), 1 =1,...5,

Bk, §) = {Bui(k: 5) o0 721
nl(k')]):B(k_J)? :17"" S,

Bnn(k)j) = {Bnn(ku])}zozo ]‘?‘;0’

Bnn(kaj) = B(k _j),

with elements

Bl ) =5 [ [ 1] el

kel,jel.

The mean square error A(f¢) is defined by the
formula

A(f) =

Thus, in the case without noise we have the
following result.

(¢, a). (18)

Corollary 1. Let ((j) be a T-PC stochastic
sequence with the spectral density matriz fS()\) of

T-variate stationary sequence ((j). Assume that
fS(N) satisfies the minimality condition

/7r Tl dr < 4o (19)

—T

Assume that condition (4) is satisfied and operator
B is invertible. Then the optimal linear estimate



Bicnux Kuiscvkoz2o nayionanrvbro2o yrisepcumemy
iment Tapaca Ilesuwernra
Cepia: Pizuro-mamemamusri HAYKY

of AC based on observations of 5(3) at points j €
{eee;=ny e, =1} \ S, is given by the formula

hTfCZCdA / Zh

AC =

—Tr

The spectral characteristic h( fg) and the mean

square error A(fg) of AE are calculated by
formulas (16) and (18).

Let us consider the mean-square estimation
problem of functional

N-T
ANC =) a()¢3)
j=1

that depends on unknown values of T-PC
stochastic sequence ((j), based on observati-
ons of the sequence ((j) + 6(j) at points j €
{,— ,—1,0} \ S. 6(j) is uncorrelated with
¢(7) T-PC stochastic sequence.

Using Proposition 1.2, the linear functional
An(C can be written as follows

N.-T
AN = a(j)C() =
j=1

N-1
_ CL 27rz]V/T<(V+jT)
3":0 v=1
N-1 T _ ~
=D > a6 35) =
}7:0 v=1
N-1 o
=D d' (1<) = AxG,

where @' (j) is defined by relation (6), (5)

T
{ei}
obtained by the T-blocking (3) of univariate T-PC
sequence ((j), j > 1.

Let C(j) and 6(j) be uncorrelated T-variate
stationary stochastic sequences with the spectral

[},

vp=1

is T-variate stationary sequence,

density matrices ff(/\) and

= {mw},

problem of optimal linear estimation of the functi-

onal
- N-1 ~ =~
= > a'(5)S0)
7=0

respectively. Consider the

(20)

45
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that depends on the unknown values of sequence
((j), based on observations of the sequence
gi(N) ( ) at points j € {..., w—1F\ S
S = U {- Ml,...,—Ml_l—Nl—l},Ml
Ek:O(Nk -+ Kk-), NO = Ko =0.

The estimate

AL (e Z€(dN)

—Tr

AnC = (21)
of the functional AN§ is defined by the spectral
characteristic hy (™) € Ls(fC + f9)

Denote by ax | ((T, .07, a'(0),...a (N—
1), 07,07, ...) a vector that has first Y ;_| K, zero
vectors 07, next N vectors @(0),...,@(N — 1) are
constructed from coefficients of the functional
An¢ by formula (6).

With the help of Hilbert space projection
method we can derive the following relations for
allm e I':

N-1 . ) ) i
) C‘L’TG)% QRO =
7=0
T i " ¢ 0 —1_iX(n—m)
Z° ") 3 /_W(f M)+ 7)) e dX.

(22)

Denote by Ry the linear operator which is
defined as follows: Ry (k,7) = R(k,j), j < N —1,
Ry(k,7) =0, j > N —1. Then we can rewrite the
relations (22) in the matrix form

RNa}{/ = Bé.

The unknown vectors ¢é(k), k € T,
determined from the equation

are

¢ =B 'Rya}.

The spectral characteristic of the optimal esti-

—

mate ANf is calculated by formula
i}\) _

= (AR SN = CTE™) £+

EE(e

-1

(23)

where
N-1

3 a)e

7=0

AN(BM)

The mean-square error of the optimal estimate

—

ANf is calculated by formula

Al £5, %) = BlANG — Andl? =
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where linear operator D is defined as follows:
k>N-—-1lorj>N-—1.

Theorem 2. Let ((j) and 6(j) be uncorrelated T-
PC stochasjic sequences with the spectral density
matrices fC(\) and f%()\) of T-variate stationary
sequences 5(;) and 5(;), respectively. Assume that
SN and fO(\) satisfy the minimality condi-
tion (7). Assume that operator B is inverti-
ble. The spectral characteristic hy(e™) and the
mean square error A(EN;fg, fg) of the optimal
linear estimate of the functional ANE based on

-~ =~

observations of the sequence ((j) + 0(j) at points
jge{.,—n,...,—1}\S, are calculated by formulas
(23) and (24).

In the case of observation without noise we
have the following result.

Corollary 2. Let ((j) be a T-PC stochastic

sequence with the spectral density matriz f¢()\)
of T-variate stationary sequence 5(]) Assume
that f<(\) satisfies the minimality condition (19).
Assume that operator B is invertible. The spectral
characteristic ﬁN(eiA) and the mean square error

A(fg) of ANZ are calculated by formulas
AR = AR 0T [FF] L @)

A(f) = (€ dn).
The linear operator B is defined in Corollary 1,
vector € is defined by the equation € = B~ 'ay.

(26)

Ezample 1. Let {(n), n € Z, be a 2-PC stochastic
sequence such that ((2n) = n(n) is a univariate
white noise with the spectral density f(\) = 1
and ((2n + 1) v(n) is an uncorrelated wi-
th n(n) univariate stationary Ornstein-Uhlenbeck
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sequence with the spectral density g(\) = m
Consider the problem of estimation of the functi-
onal

A1 =¢(1) +¢(2)

based on observations of ((n),n € {...,—1,0} \
(—3, -2} {...,—5,—4,—1,0}. Here S
{~3,-2}, N\ =K, =1, M; = 2.

Rewrite functional A;¢ in the form (20)

- 2)e?m0/2 q(2 4 0 -
2)e2i20/2)T — (1,1)T, (0) = (C(1+0-2),¢(2+
0-2))7 = (¢1(0),62(0)7, S = {—2}. The spectral
density matrix of 2-variate stationary sequence
¢(n) is of the form

F = <f(0A) g(OA>>

— —

The matrix [f¢(\)]

is of the form

SO

(1 0Y (0 0N i, (0 0 i
“02) 0 B (o )

= B(0) + B(—1)e ™ + B(1)e*

and satisfies the minimality condition (19). In the
last equality matrices
(0 0
~\0 -1

are th_el Fourier coefficients of the function
[f(A)] . In order to find the spectral characteri-
stic h1(e™) and the mean-square error A(fS) of

the estimate Alz let us use the Corollary 2. To
find the unknown coefficients

B(0) = <é g) . B(~1) = B(1)

k) = (B~ 'ay) (k)
kel =50U{0,1,..} ={-2,0,1,..}

we use the equation (17), where vectors
&= (@(=2,80,8(1),.), & =

(07,@"(0),07,...). The operator B is defined by

matrix
B Bln)
B = ,
(Bnl Bnn
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with block-matrices

By = {Bll(kvj)}k:—2 j=-2 = B(0)7

B, = {Bln(kaj)}k:—2 ]o'i() =
(B(=2) B(=3) B(—4) ...) = (0205 05....),

By = {Bnl(kaj)}kzo j=-2=
(B(2)B(3)B(4)..)" = (02020,...)7,

Bnn = {Bnn(kd)}go:o ;‘).;O =
B(0) B(~1) O,
B(1) B(0) B(-1)
0, B(1) B(0)

i

where Oy = (8 8)
The inverse matrix B~! can be represented in
the form .
B 0
-1 _ 11
5o < 0 Bm%> ’

where B! = (B(0))~!, B! is the inverse matrix
to Byy. To find B;,! we use that matrix [fS(\)]!
admits factorization

o0

PN = 3D BG) =

j=—o00

= (Z w<k>e—“‘*> (Zw(kw’“) =
k=0 k=0

(G o)

o0

> (ke
k=0

wtere w0 = (5 9) v = (5 5),
6(8) = Ok = 2 and p(0) = (g ) ol =
0 0) 41

If we denote by ¥ and & linear operators
determined by matrices with elements ¥(i,j) =
Y — i), (i,5) = w(j — i), for 0 < i <
U(i,j) = 0, ®(¢,5) = 0, for 0 < j < 4. Then
elements of the matrix B,,, can be represented in
the form By, (i,7) = (PP*)(4, 7). It is not hard to
verify that W@ = ®W = . This makes possible
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to write elements of B, in the form B,

(@*@)(i, ) = 75 (i — 1) — D).
Using equation € = B™'ay we can represent
the unknown coefficients ¢(k), k € I' in the form

&(—2) =0,
B, (0,0)@(0),
By, (1,0)a(0),

&(0)
1)

i) = B, (i,0)d@(0), i > 2.
The spectral characteristic hi(e™) is determi-
ned by the formula (25)
hi(e?) = =T (0)B(—1)e ™ =
—B;,(0,0)@(0)B(—1)e".

characteristic is of the form

hi (€?) = —(0,—1)e ™.
The optimal linear estimate Alf can be
calculated by the formula (21)

Since By, = ¢*(0)¢(0)

10
0 1), the spectral

A:8 = (1) = ¢(0).

—

The mean-square error of the estimate Alf
determined by (26) equals

—

A(f) =

ETa Z_1‘1

) = 2.
3 Minimax (robust) method of linear
extrapolation problem

Let f(A) and g(A) be the spectral density matrices
of T-variate stationary sequences (| () and 5(]'),
obtained by T-blocking (3) of T-PC sequences ()
and 6(j), respectively.

The obtained formulas may be applied for fi-
nding the spectral characteristic and the mean
square error of the optimal linear estimate of the
functionals Af and ANf only under the conditi-
on that the spectral density matrices f(A\) and
g(A) are exactly known. If the density matrices
are not known exactly while a set D = Dy x D,
of possible spectral densities is given, the mini-
max (robust) approach to estimation of functi-
onals from unknown values of stationary sequences
is reasonable. In this case we find the estimate whi-
ch minimizes the mean square error for all spectral
densities from the given set simultaneously.
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Definition 3. For a given class of pairs of spectral
densities D = Dy X D the spectral density matri-
ces fO(N) € Dy, g°(\) € Dy are called the least
favorable in D for the optimal linear estimation of

the functional AE if

A(f2, %) = AR(£°, ¢%); £, 6°) =

= max A(h ,0): [ 9).
pax (h(f,9); f.9)

Definition 4. For a given class of pairs of spectral
densities D = Dy x Dy the spectral characteristic

EO(A) of the optimal linear estimate of the functi-
onal AC is called minimaz (robust) if

R\ eHp= () Li(f+g),

(f.9)eD
min max A E; ,g) = max A EO; L)
heHp (f,9)€D (h: f,9) (f.9)€D (h%s £,9)

Taking into consideration these definitions
and the obtained relations we can verify that the
following lemmas hold true.

Lemma 1. The spectral density matrices fO(\) €
Dy, °(\) € Dy, that satisfy the minimality condi-
tion (7), are the least favorable in the class D for
the optimal linear estimation of Ag, if the Fourier
coefficients of the matriz functions

(PO +°ON7H POV +¢° ()

FPOEN) + ")) ")
define matrices B°, R°, DY, that determine a
solution of the constrained optimization problem

max ((Rd@, B"'Ra)) + (Da,a)) =
(f.9)€D
= (R%G, (B°)"'R"@)) + (D, ).

The minimaz spectral characteristic RO = E(fo, ')
is given by (11), if h(f°, ¢°) € Hp.

A(R(f°,6°); f.9)

X (AT(eiA)gO(A) + (co(e“))T)*dA + ;T/

—T
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In the case of observations of the sequence wi-
thout noise the following corollary holds true.

Corollary 3. The spectral density matriz fO(\) €
Dy, that satisfies the minimality condition (19), is
the least favorable in the class Dy for the optimal
linear estimation of Af based on observations of
C(j) at points j € {...,—n, ..., —1}\ S, if the Fouri-
er coefficients of the matriz function (f°(\))~!
define the matriz B°, that determine a solution
of the constrained optimization problem

;rel%>;<3’1d’, ) = ((B")"'ad,a).

The minimaz spectral characteristic hO = h(f9) is
given by (16), if h(f°) € Hp.

The least favorable spectral densities fO(\) €
D¢, ¢°(\) € D, and the minimax spectral

characteristic h° = h(f°,¢°) form a saddle poi-
nt of the function A(h; f,g) on the set Hp x D.
The saddle point inequalities

AR £,9) < AR 2, ¢%) < A(R; £2,4°),
Vh € Hp,Yf € Dy, Yg € D,

hold true when R0 = H(fo,go), E(fo,go) € Hp
and (f°, ") is a solution of the constrained opti-
mization problem

A (H(fo,go); £, g) — sup,

(f,9) € Dy x Dy. (27)

The linear functional
calculated by the formula

A(R(f%,6°); f.9) s

= % /7r (AT(e“)gO(A) + (Co(e“))T) (FOO) + ")) LF O (OO + ¢°(A) L

(ATEO) = (CENT) () + ") ' x

% g2 + g2 (0) L (AT ()00 — (™) T) dn,

where C0(e") =3 .&”

¢%(n) = (B°)~'R"a)(n).

(n)e™*, column vectors

The constrained optimization problem (27)
is equivalent to the unconstrained optimization

48

problem [?]:

AR(S°, 6°); £, 9)+

AD(f?.g) = -
+6((fvg)|Df X Dg) —)il’lf,

(28)
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where 6((f,9)|Dy x Dg) is the indicator functi-
on of the set D = Dy x Dy. A solution of the
problem (28) is characterized by the condition
0 € 0AD(f°, ¢°), where AP (P, ¢°) is the subdi-
fferential of the convex functional Ap(f, g) at poi-
nt (f%,9°) [33].

The form of the functional A(l_i(fo,go);f,g)
admits finding the derivatives and differentials of
the functional in the space L x Lj. Therefore
the complexity of the optimization problem (28)
is determined by the complexity of calculati-
ng of subdifferentials of the indicator functions
d((f,9)| Dy x Dy) of the sets Dy x Dy [13].

Taking into consideration the introduced defi-
nitions and the derived relations we can verify that
the following lemma holds true.

Lemma 2. Let (f°, g") be a solution to the optimi-
zation problem (28). The spectral densities fO(\),
g°(N\) are the least favorable in the class D = Dy x
Dy, and the spectral characteristic RO = h(f0,¢°)
18 the minimazx of the optimal linear estimate of
the functional AE if H(fo, ) € Hp.

In the case of estimation of the functional
based on observations without noise we have the
following statement.

Lemma 3. Let fO(\) satisfies the condition (19)
and be a solution of the constrained optimization
problem

A(R(f): f) = sup, f(\) € Dy, (29)
AN =5 [ ()
< ()TN0 Eax

where CO(e) = Y @ %(n)e™, column vectors
£0(n) = ((B%)1&)(n).

Then fO(\) is the least favorable spectral
density matriz for the optimal linear estimation
of Af based on observations of 5(3) at points
j e {.,—n,...,—1} \' S. The minimaz spectral
characteristic h® = H(fo) is given by (16), if
E(fo) € Hp.

4 The least favorable spectral densities in
the class D = D x D‘[f

Let f(A) and g(\) be the spectral density matrices
of T-variate stationary sequences ((j) and 6(j),
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obtained by T-blocking (3) of T-PC sequences ¢(7)
and 6(j), respectively.

Consider the problem of minimax estimation
of the functional AE based on observations of the
sequence C()+0(j) at points j € {...,—n, ..., —1}\
S under the condition that the spectral densi-
ty matrices f(A) and g(\) belong to the class
D = Dy x Dg, where

Di = {f(A) ;T/_Zf(k)dkzP},

Dyt = {g(A) V(A <g(\) <UW),

™

2T

i ={sig. [

DY? = {g()\) Tr V(A) < Tr g(\) < Tr U(N),

gNdA = Q},

—Tr

FN)dA :p},

1 vy
Tr g(N\)d\ = q},

27

where P, () are known positive definite Hermitian
matrices, spectral densities V(\), U(\) are known
and fixed, p, ¢ are known and fixed numbers.

With the help of the method of Lagrange
multipliers we can find that solution (f°()), g°(\))
of the constrained optimization problem (27) sati-
sfy the following relations for these sets of admi-
ssible spectral densities.

For the pair Dé X Dgl we have relations

(9" (N A(e?)+C0(e

= (2 ) +g°()aa’ (f7(\) +g°(A),  (30)

(P A -COE)(f°
= (PO +8 ODFFT 1 )+ )+

where &,E are Lagrange multipliers, ¢1(A) < 0
and ¢1(A) = 0 if g°(A) > V(A), ¥2()) > 0 and
¥a(N) = 0 if g°(\) < U(N).

For the pair Dg X Dgz we have relations

(9° (N A(P)+C0(e)) ((9° (V) T Ale!
=a’(f'(N) +¢° (V)% (32)

PN T A +CO(e™)

(A) " A(e?)=Ce™)

(31)

MHCO (™)
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(O A(e)=COePM)) ((fO (V) TA(EP)=COe™) T (COeM))(CO(e™)) T =

(e
= (8% + o1(A) + o2(N) (SN + 9" (V)% (3

3)
where a?, 32 are Lagrange multipliers, ¢1(\) < 0
and @1(\) = 0 if Tr g°(\) > Tr V() ¢2(A) >0
and p2(A) = 0 if Tr g°(\) < Tr U(N).

Hence the following theorem holds true.

Theorem 3. Let the spectral densities fO(\) and
g°(\) satisfy the minimality condition (7). The
least favorable spectral densities fO()\), g°(\) in the
class D(l] X Dgl for the optimal linear extrapolati-
on of the functional AE are determined by relati-
ons (30), (31). The least favorable spectral densi-
ties fO(N), g°(\) in the class D x DY? for the
optimal linear extrapolation of the functional Af
are determined by relations (32), (33). The mini-
mazx spectral characteristic of the optimal estimate
of the functional Af s determined by the formula

(11).
In the case of observations of the sequence wi-
thout noise the following corollaries hold true.

Corollary 4. Let the spectral density fO(\) sati-
sfies the minimality condition (19). The least
favorable spectral density f°(X\) in the class D}
or D2 for the optimal linear extrapolation of the
functional AC based on observations of 5(5) at poi-

nts j € {...,—n, ..., —1}\ S is determined by relati-
ons, respectively
(COUeM)(C (™)) T = FPNaa’ fo(n),  (34)

(COUeM)(C (™) = (S V)2, (35)

by the constrained optimization problem (29) and
restrictions on the density from the corresponding
class D(l] or D%. The minimax spectral characteri-
stic of the optimal estimate of the functional AE 18
determined by the formula (16 ).

Corollary 5. Let the spectral density fO(\) sati-
sfies the minimality condition (19). The least
favorable spectral density fO(\) in the class DY
or Dg2 for the optimal linear extrapolation of the
functional AC based on observations of 5(3) at poi-
nts j € {ioey =My ey —1}\§ is determined by relati-
ons, respectively

50

= (B2 4+ @1(\) + 92(N) (' (V)% (37)

by the constrained optimization problem (29) and
restrictions on the density from the correspondi-
ng class Dgl or D‘IP. The minimax spectral
characteristic of the optimal estimate of the functi-
onal Af is determined by the formula (16).

5 Conclusions

In this article we study the extrapolation of the
functionals A and An( which depend on the
unobserved values of a periodically correlated
stochastic sequence ((j). Estimates are based on
observations of a periodically correlated stochastic
sequence ((j) + 60(j) with missing observati-
ons, that means that observations of ((j) +
6(j) are known at points j € Z \ S, j €
{oy =0y =2, 1,0} \ S, S = Ui {-M; - T +
1,...,—M;_1-T— N;-T}. The sequence 6(j) is an
uncorrelated with ¢(j) additive noise.

The extrapolation problem is considered
under the condition of spectral certainty and
under the condition of spectral uncertainty. In
the first case of spectral certainty the spectral
density matrices f(A) and g(\) of the T-variate
stationary sequences C(n) and 6(n), obtained by
T-blocking of T-PC sequences ((j) and 6(j),
respectively, are suppose to be known exactly. Wi-
th the help of Hilbert space projection method
formulas for calculating the spectral characteri-
stic and the mean-square error of the optimal
estimate of the functionals are proposed. In the
second case of spectral uncertainty the spectral
density matrices are not exactly known while a
class D = Dy x D, of admissible spectral densiti-
es is given. Using the minimax (robust) estimati-
on method we derived relations that determine
the least favorable spectral densities and the mi-
nimax spectral characteristic of the optimal esti-
mate of the functional AC. The problem is investi-
gated in details for two special classes of admissi-
ble spectral densities. In each of cases of spectral
certainty and uncertainty the case of observations
of the sequence without noise 6(j) are presented.
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